Advertisement

Climate Dynamics

, Volume 47, Issue 1–2, pp 95–106 | Cite as

Multilevel vector autoregressive prediction of sea surface temperature in the North Tropical Atlantic Ocean and the Caribbean Sea

  • Dong Eun LeeEmail author
  • David Chapman
  • Naomi Henderson
  • Chen Chen
  • Mark A. Cane
Article

Abstract

We use a multilevel vector autoregressive model (VAR-L), to forecast sea surface temperature anomalies (SSTAs) in the Atlantic hurricane Main Development Region (MDR). VAR-L is a linear regression model using global SSTA data from L prior months as predictors. In hindcasts for the recent 30 years, the multilevel VAR-L outperforms a state-of-the-art dynamic forecast model, as well as the commonly used linear inverse model (LIM). The multilevel VAR-L model shows skill in 6–12 month forecasts, with its greatest skill in the months of the active hurricane season. The optimized model for the best long-range skill score in the MDR, chosen by a cross-validation procedure, has 12 time levels and 12 empirical orthogonal function modes. We investigate the optimal initial conditions for MDR SSTA prediction using a generalized singular vector decomposition of the propagation matrix. We find that the added temporal degrees of freedom for the predictands in VAR12 as compared with a LIM model, which allow the model to capture both the local wind–evaporation–SST feedback in the Tropical Atlantic and the impact on the Atlantic of an improved medium-range ENSO forecast, elevate the long-range forecast skill in the MDR.

Keywords

Data-driven model Sea surface temperature prediction Atlantic hurricane Main Development Region 

Notes

Acknowledgments

The authors would like to express our deep appreciation to the anonymous reviewer for the constructive comments. This research was supported by the Office of Naval Research under the Grant No. N00014-12-1-0911.

References

  1. Alexander M, Matrosova A, Penland C, Scott J, Chang P (2008) Forecasting Pacific SSTs: linear inverse model predictions of the PDO. J Clim 21:385–402CrossRefGoogle Scholar
  2. Barnston AG, Tippett MK, L’Heureux ML, Li S, DeWitt DG (2012) Skill of real-time seasonal ENSO model predictions during 2002–11: Is our capability increasing? Bull Am Meteor Soc 93(5):631–651CrossRefGoogle Scholar
  3. Barreiro M, Chang P, Ji L, Saravanan R, Giannini A (2005) Dynamical elements of predicting boreal spring tropical Atlantic sea-surface temperatures. Dyn Atmos Oceans 39:61–85CrossRefGoogle Scholar
  4. Blumenthal MB (1991) Predictability of a coupled ocean–atmosphere model. J Clim 4:766–784CrossRefGoogle Scholar
  5. Chapman D, Cane MA, Henderson N, Lee DE, Chen C (2015) A vector autoregressive ENSO prediction model. J Clim. doi: 10.1175/JCLI-D-15-0306.1 Google Scholar
  6. Charney JG, Halem M, Jastrow R (1969) Use of incomplete historical data to infer the present state of the atmosphere. J Atmos Sci 26(5):1160–1163CrossRefGoogle Scholar
  7. Chekroun MD, Kondrashov D, Ghil M (2011) Predicting stochastic systems by noise sampling, and application to the El Niño–Southern Oscillation. PNAS 108:11766–11771CrossRefGoogle Scholar
  8. Chen D, Cane MA, Kaplan A, Zebiak SE, Huang DJ (2004) Predictability of El Niño over the past 148 years. Nature 428:733–736CrossRefGoogle Scholar
  9. Chen M, Kumar A, Wang W (2015) A study of the predictability of sea surface temperature over the tropics. Clim Dyn 44:1767–1776CrossRefGoogle Scholar
  10. Chiang J, Vimont D (2004) Analogous Pacific and Atlantic Meridional modes of Tropical atmosphere–ocean variability. J Clim 17:4143–4158CrossRefGoogle Scholar
  11. Czaja A, Frankignoul C (2002) Observed impact of Atlantic SST anomalies on the North Atlantic Oscillation. J Clim 15:606–623CrossRefGoogle Scholar
  12. Dee D et al (2011) The ERA-interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597CrossRefGoogle Scholar
  13. Enfield DB (1996) Relationships of inter-American rainfall to tropical Atlantic and Pacific variability. Geophys Res Lett 23:3305–3308CrossRefGoogle Scholar
  14. Enfield DB, Mayer DA (1997) Tropical Atlantic sea surface temperature variability and its relation to El Niño–Southern Oscillation. J Geophys Res 102(C1):929–945CrossRefGoogle Scholar
  15. Frankignoul C, Kestenare E (2005) Observed Atlantic SST anomaly impact on the NAO: an update. J Clim 18:4089–4094CrossRefGoogle Scholar
  16. Gianninni A, Saravanan R, Chang P (2004) The preconditioning role of tropical Atlantic variability in the development of the ENSO teleconnection: implications for the prediction of Nordeste rainfall. Clim Dyn 22:839–855CrossRefGoogle Scholar
  17. Hasselmann K (1988) PIPs and POPs—a general formalism for the reduction of dynamical systems in terms of principal interaction patterns and principal oscillation patterns. J Geophys Res 93:11015–11020CrossRefGoogle Scholar
  18. Hastenrath S (1978) On modes of tropical circulation and climate anomalies. J Atmos 35:2222–2231CrossRefGoogle Scholar
  19. Hawkins E, Sutton R (2007) Variability of the Atlantic thermohaline circulation described by three-dimensional empirical orthogonal functions. Clim Dyn 29:745–762CrossRefGoogle Scholar
  20. Hu ZZ, Kumar A, Huang B, Wang W, Zhu J, Wen C (2013) Prediction skill of monthly SST in the North Atlantic Ocean in NCEP Climate Forecast System version 2. Clim Dyn 40:2745–2759. doi: 10.1007/s00382-012-1431-z CrossRefGoogle Scholar
  21. Jin E, Kinter JL III (2009) Characteristics of tropical Pacific SST predictability in coupled GCM forecasts using the NCEP CFS. Clim Dyn 32:675–691CrossRefGoogle Scholar
  22. Kaplan A, Cane MA, Kushnir Y, Clement A, Blumenthal M, Rajagopalan B (1998) Analyses of global sea surface temperature 1856–1991. J Geophys Res 103:18567–18589CrossRefGoogle Scholar
  23. Keenlyside NS, Latif M, Jungclaus J, Kornblueh L, Roeckner E (2008) Advancing decadal-scale climate prediction in the North Atlantic sector. Nature 453:84–88. doi: 10.1038/nature06921 CrossRefGoogle Scholar
  24. Kirtman BP et al (2014) The North American multimodel ensemble Phase-1 seasonal-to-interannual prediction; Phase-2 toward developing intraseasonal prediction. Bull Am Meteorol Soc 95:585–601CrossRefGoogle Scholar
  25. Kondrashov D, Kravtsov S, Robertson AW, Ghil M (2005) A hierarchy of data-based ENSO models. J Clim 18:4425–4444CrossRefGoogle Scholar
  26. Kravtsov S, Kondrachov D, Ghil M (2009) Empirical model reduction and the modeling hierarchy in climate dynamics. In: Palmer T, Williams T (eds) Stochastic physics and climate modeling. Cambridge University Press, Cambridge, pp 35–72Google Scholar
  27. Kushnir Y, Robinson WA, Chang P, Robertson AW (2006) The physical basis for predicting Atlantic sector seasonal-to-interannual climate variability. J Clim 19:5949–5970CrossRefGoogle Scholar
  28. Newman M, Alexander MA, Scott JD (2011) An empirical model of tropical ocean dynamics. Clim Dyn 37:1823–1841CrossRefGoogle Scholar
  29. Penland C, Hartten LM (2014) Stochastic forcing of north tropical Atlantic sea surface temperatures by the North Atlantic Oscillation. Geophys Res Lett 41:2126–2132. doi: 10.1002/2014GL059252 CrossRefGoogle Scholar
  30. Penland C, Matrosova L (1998) Prediction of tropical Atlantic sea surface temperatures using linear inverse modeling. J Clim 11:483–496CrossRefGoogle Scholar
  31. Penland C, Sardeshmukh P (1995) Optimal growth of tropical sea surface temperature anomalies. J Clim 8:1999–2024CrossRefGoogle Scholar
  32. Saravanan R, Chang P (2000) Interaction between tropical Atlantic variability and El Niño–Southern Oscillation. J Clim 13:2177–2194CrossRefGoogle Scholar
  33. Smith TM, Reynolds RW, Peterson TC, Lawrimore J (2008) Improvements NOAAs historical merged land-ocean temp analysis (1880–2006). J Clim 21:2283–2296CrossRefGoogle Scholar
  34. Tziperman E, Ioannou PJ (2002) Transient growth and optimal excitation of thermohaline variability. J Phys Ocean 32:3427–3435CrossRefGoogle Scholar
  35. Vimont D, Wallace J, Battisti D (2003) The seasonal footprinting mechanism in the Pacific: implications for ENSO. J Clim 16:2668–2675CrossRefGoogle Scholar
  36. Vimont D, Alexander M, Newman M (2014) Optimal growth of Central and East Pacific ENSO events. Geophys Res Lett. doi: 10.1002/2014GL059997 Google Scholar
  37. Xie SP, Philander SG (1994) A coupled ocean–atmosphere model of relevance to the ITCZ in the eastern Pacific. Tellus 46A:340–350CrossRefGoogle Scholar
  38. Zanna L, Tziperman E (2005) Non-normal amplification of the thermohaline circulation. J Phys Ocean 35:1593–1605CrossRefGoogle Scholar
  39. Zanna L, Tziperman E (2012) Forecast skill and predictability of observed Atlantic sea surface temperature. J Clim 25:5046–5056CrossRefGoogle Scholar
  40. Zhao M, Held I, Vecchi GA (2010) Retrospective forecasts of the hurricane season using a global atmospheric model assuming persistence of SST anomalies. Mon Weather Rev 138:3858–3868CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Lamont-Doherty Earth Observatory of Columbia UniversityPalisadesUSA

Personalised recommendations