Climate Dynamics

, Volume 47, Issue 1–2, pp 79–93 | Cite as

ENSO teleconnections with Australian rainfall in coupled model simulations of the last millennium

  • Josephine R. BrownEmail author
  • Pandora Hope
  • Joelle Gergis
  • Benjamin J. Henley


El Niño-Southern Oscillation is the major source of interannual rainfall variability in the Australian region, with the strongest influence over eastern Australia. The strength of this regional ENSO–rainfall teleconnection varies in the observational record. Climate model simulations of the “last millennium” (850–1850 C.E.) can be used to quantify the natural variability of the relationship between ENSO and Australian rainfall on decadal and longer time scales, providing a baseline for evaluating future projections. In this study, historical and last millennium (LM) simulations from six models were obtained from the Coupled Model Intercomparison Project Phase 5 and Palaeoclimate Modelling Intercomparison Project Phase 3. All models reproduce the observed negative correlation between September to February (SONDJF) eastern Australian rainfall and the NINO3.4 index, with varying skill. In the LM simulations, all models produce decadal-scale cooling over eastern Australia in response to volcanic forcing, as well as a long-term cooling trend. Rainfall variability over the same region is not strongly driven by external forcing, with each model simulating rainfall anomalies of different phase and magnitude. SONDJF eastern Australian rainfall is strongly correlated with ENSO in the LM simulations for all models, although some models simulate periods when the teleconnection weakens substantially for several decades. Changes in ENSO variance play a role in modulating the teleconnection strength, but are not the only factor. The long-term average spatial pattern of the ENSO–Australian rainfall teleconnection is similar in the LM and historical simulations, although the spatial pattern varies over time in the LM simulations.


El Niño-Southern Oscillation Last millennium Coupled climate model Rainfall variability Australia 



The contribution of JRB and PH was supported by the Australian Climate Change Science Program. JG is supported by an Australian Research Council Fellowship DE130100668. BH is funded by an ARC Cooperative Research Network (CRN) research grant. We acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modelling groups for producing and making available their model output. For CMIP the U.S. Department of Energy’s Program for Climate Model Diagnosis and Intercomparison provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals. We thank Greg Kociuba for calculation of the equatorial SOI. We thank an anonymous reviewer for comments that greatly improved the manuscript. We also thank Sophie Lewis for discussion of model evaluation, and Ian Smith and Christine Chung for comments on an earlier version of the manuscript.

Supplementary material

382_2015_2824_MOESM1_ESM.docx (465 kb)
Supplementary material 1 (DOCX 465 kb)


  1. Adams J, Mann M, Ammann C (2003) Proxy evidence for an El Niño-like response to volcanic forcing. Nature 426:274–278. doi: 10.1038/nature02101 CrossRefGoogle Scholar
  2. Adler RF et al (2003) The version 2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979–present). J Hydrometeorology 4:1147–1167CrossRefGoogle Scholar
  3. Arblaster J, Meehl G, Moore A (2002) Interdecadal modulation of Australian rainfall. Clim Dyn 18:519–531CrossRefGoogle Scholar
  4. Ashcroft L, Karoly DJ, Gergis J (2014) Southeastern Australian climate variability 1860–2009: a multivariate analysis. Int J Climatol 34:1928–1944. doi: 10.1002/joc.3812 CrossRefGoogle Scholar
  5. Ault TR, Cole JE, St. George S (2012) The amplitude of decadal to multidecadal variability in precipitation simulated by state-of-the-art climate models. Geophys Res Lett 39:L21705. doi: 10.1029/2012GL053424 CrossRefGoogle Scholar
  6. Ault TR, Deser C, Newman M, Emile-Geay J (2013) Characterizing decadal to centennial variability in the equatorial Pacific during the last millennium. Geophys Res Lett 40:3450–3456. doi: 10.1002/grl.50647 CrossRefGoogle Scholar
  7. Braconnot P, Harrison SP, Kageyama M, Bartlein PJ, Masson-Delmotte V, Abe-Ouchi A, Otto-Bliesner B, Zhao Y (2012) Evaluation of climate models using palaeoclimatic data. Nat Clim Change 2:417–424. doi: 10.1038/NCLIMATE1456 CrossRefGoogle Scholar
  8. Bretherton CS, Widmann M, Dymnikov VP, Wallace JM, Bladé I (1999) The effective number of spatial degrees of freedom of a time-varying field. J Clim 12:1990–2009CrossRefGoogle Scholar
  9. Brown JR, Moise AF, Colman RA (2013) The South Pacific Convergence Zone in CMIP5 simulations of historical and future climate. Clim Dyn 41:2179–2197. doi: 10.1007/s00382-012-1591-x CrossRefGoogle Scholar
  10. Cai W, van Rensch P (2012) The 2011 southeast Queensland extreme summer rainfall: a confirmation of a negative Pacific Decadal Oscillation phase? Geophys Res Lett 39:L08702. doi: 10.1029/2011GL050820 CrossRefGoogle Scholar
  11. Coats S, Smerdon JE, Cook BI, Seager R (2013) Stationarity of the tropical Pacific connection to North America in CMIP5/PMIP3 model simulations. Geophys Res Lett 40:4927–4932. doi: 10.1002/grl.50938 CrossRefGoogle Scholar
  12. Diaz HF, Hoerling MP, Eischeid JK (2001) ENSO variability, teleconnections and climate change. Int J Climatol 21:1845–1862. doi: 10.1002/joc.631 CrossRefGoogle Scholar
  13. Emile-Geay J, Seager R, Cane M, Cook E, Haug GH (2008) Volcanoes and ENSO over the past millennium. J Clim 21:3134–3148. doi: 10.1175/2007JCLI1884.1 CrossRefGoogle Scholar
  14. Emile-Geay J, Cobb KM, Mann ME, Wittenberg AT (2013) Estimating central equatorial Pacific SST variability over the past millennium. Part II: reconstruction and implications. J Clim 26:2329–2352. doi: 10.1175/JCLI-D-11-00511.1 CrossRefGoogle Scholar
  15. Fernández-Donado L et al (2013) Large-scale temperature response to external forcing in simulations and reconstructions of the last millennium. Clim Past 9:393–421. doi: 10.5194/cp-9-393-2013 CrossRefGoogle Scholar
  16. Gallant A, Kiem A, Verdon-Kidd D, Stone R, Karoly D (2012) Understanding climate processes in the Murray-Darling basin for natural resources management. Hydrol Earth Syst Sci 16:2049–2068CrossRefGoogle Scholar
  17. Gallant AJE, Phipps SJ, Karoly DJ, Mullan AB, Lorrey AM (2013) Non-stationary Australasian teleconnections and implications for paleoclimate reconstructions. J Clim 26:8827–8849. doi: 10.1175/JCLI-D-12-00338.1 CrossRefGoogle Scholar
  18. Gergis J, Gallant AJE, Braganza K, Karoly DJ, Allen K, Cullen L, D’Arrigo R, Goodwin I, Grierson P, McGregor S (2012) On the long-term context of the 1997–2009 ‘Big Dry’ in south-eastern Australia: insights from a 206-year multi-proxy rainfall reconstruction. Clim Change 111:923–944. doi: 10.1007/s10584-011-0263-x CrossRefGoogle Scholar
  19. Grose MR, Brown JN, Narsey S, Brown JR, Murphy BF, Langlais C, Sen Gupta A, Moise AF, Irving DB (2014) Assessment of the CMIP5 global climate model simulations of the western tropical Pacific climate system and comparison to CMIP3. Int J Climatol 34:3382–3399. doi: 10.1002/joc.3916 CrossRefGoogle Scholar
  20. Hendy E, Gagan M, Lough J (2003) Chronological control of coral records using luminescent lines and evidence for non-stationary ENSO teleconnections in northeastern Australia. The Holocene 13:187–199CrossRefGoogle Scholar
  21. Jones DA, Wang W, Fawcett R (2009) High-quality spatial climate data-sets for Australia. Aust Meteorol Oceanogr J 58:233–248Google Scholar
  22. Kestin T, Karoly D, Yano JI (1998) Time–frequency variability of ENSO and stochastic simulations. J Clim 11:2258–2272CrossRefGoogle Scholar
  23. King AD, Donat MG, Alexander LV, Karoly DJ (2014) The ENSO–Australian rainfall teleconnection in reanalysis and CMIP5. Clim Dyn. doi: 10.1007/s00382-014-2159-8 Google Scholar
  24. Landrum L, Otto-Bliesner BL, Wahl ER, Conley A, Lawrence PJ, Rosenbloom N, Teng H (2013) Last millennium climate and its variability in CCSM4. J Clim 26:1085–1111. doi: 10.1175/JCLI-D-11-00326.1 CrossRefGoogle Scholar
  25. Lewis SC, Karoly DJ (2015) Are estimates of anthropogenic and natural influences on Australia’s extreme 2010–2012 rainfall model-dependent? Clim Dyn 45:679–695. doi: 10.1007/s00382-014-2283-5 CrossRefGoogle Scholar
  26. Li J, Xie S-P, Cook ER, Huang G, D’Arrigo R, Liu F, Ma J, Zheng X-T (2011) Interdecadal modulation of El Niño amplitude during the past millennium. Nat Clim Change 1:114–118. doi: 10.1038/NCLIMATE1086 CrossRefGoogle Scholar
  27. Li J et al (2013) El Niño modulations over the past seven centuries. Nat Clim Change 3:822–826. doi: 10.1038/NCLIMATE1936 CrossRefGoogle Scholar
  28. Mann ME, Cane MA, Zebiak SE, Clement A (2005) Volcanic and solar forcing of the tropical Pacific over the past 1000 years. J Clim 18:447–456CrossRefGoogle Scholar
  29. Masson-Delmotte V, Schulz M, Abe-Ouchi A, Beer J, Ganopolski A, González Rouco JF, Jansen E, Lambeck K, Luterbacher J, Naish T, Osborn T, Otto-Bliesner B, Quinn T, Ramesh R, Rojas M, Shao X, Timmermann A (2013) Information from paleoclimate archives. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  30. McGregor S, Timmermann A (2011) The effect of explosive tropical volcanism on ENSO. J Clim 24:2178–2191. doi: 10.1175/2010JCLI3990.1 CrossRefGoogle Scholar
  31. McGregor S, Timmermann A, Timm O (2010) A unified proxy for ENSO and PDO variability since 1650. Clim Past 6:1–17. doi: 10.5194/cp-6-1-2010 CrossRefGoogle Scholar
  32. McGregor S, Timmermann A, England MH, Timm OE, Wittenberg AT (2013) Inferred changes in El Niño-Southern Oscillation variance over the past six centuries. Clim Past 9:2269–2284. doi: 10.5194/cp-9-2269-2013 CrossRefGoogle Scholar
  33. Neukom R, Gergis J (2012) Southern Hemisphere high-resolution palaeoclimate records of the last 2000 years. The Holocene 5:501–524. doi: 10.1177/0959683611427335 CrossRefGoogle Scholar
  34. Nicholls N, Drosdowsky W, Lavery B (1997) Australian rainfall variability and change. Weather 52:66–71CrossRefGoogle Scholar
  35. PAGES 2 k Consortium (2013) Continental-scale temperature variability during the past two millennia. Nat Geosci 6:339–346. doi: 10.1038/ngeo1797 CrossRefGoogle Scholar
  36. Power SB, Kociuba G (2011) The impact of global warming on the Southern Oscillation Index. Clim Dyn 37:1745–1754. doi: 10.1007/s00382-010-0951-7 CrossRefGoogle Scholar
  37. Power S, Tseitkin F, Torok S, Lavery B, Dahni R, McAvaney B (1998) Australian temperature, Australian rainfall and the Southern Oscillation, 1910–1992: coherent variability and recent changes. Aust Meteorol Mag 47:85–101Google Scholar
  38. Power S, Casey T, Folland C, Colman A, Mehta V (1999) Inter-decadal modulation of the impact of ENSO on Australia. Clim Dyn 15:319–324CrossRefGoogle Scholar
  39. Power S, Haylock M, Colman R, Wang X (2006) The predictability of interdecadal changes in ENSO activity and ENSO teleconnections. J Clim 19:4755–4771CrossRefGoogle Scholar
  40. Rasmusson E, Carpenter T (1982) Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Mon Weather Rev 110:354–384CrossRefGoogle Scholar
  41. Risbey JS, Pook MJ, McIntosh PC, Wheeler MC, Hendon HH (2009) On the remote drivers of rainfall variability in Australia. Mon Weather Rev 137:3233–3253CrossRefGoogle Scholar
  42. Ropelewski CF, Halpert MS (1987) Global and regional scale precipitation patterns associated with the El Niño/Southern Oscillation. Mon Weather Rev 115:1606–1626CrossRefGoogle Scholar
  43. Schmidt GA, Jungclaus JH, Ammann CM, Bard E, Braconnot P, Crowley TJ, Delaygue G, Joos F, Krivova NA, Muscheler R, Otto-Bliesner BL, Pongratz J, Shindell DT, Solanki SK, Steinhilber F, Vieira LE (2012) Climate forcing reconstructions for use in PMIP simulations of the last millennium (v1.1). Geoscie Model Dev 5:185–191. doi: 10.5194/gmd-5-185-2012 CrossRefGoogle Scholar
  44. Schmidt GA, Annan JD, Bartlein PJ, Cook BI, Guilyardi E, Hargreaves JC, Harrison SP, Kageyama M, LeGrande AN, Konecky B, Lovejoy S, Mann ME, Masson-Delmotte V, Risi C, Thompson D, Timmermann A, Tremblay LB, Yiou P (2014) Using palaeo-climate comparisons to constrain future projections in CMIP5. Clim Past 10(1):221–250. doi: 10.5194/cp-10-221-2014 CrossRefGoogle Scholar
  45. Smith TM, Reynolds RW (2004) Improved extended reconstruction of SST (1854–1997). J Clim 17:2466–2477CrossRefGoogle Scholar
  46. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498. doi: 10.1175/BAMS-D-11-00094.1 CrossRefGoogle Scholar
  47. Vincent EM, Lengaigne M, Menkes CE, Jourdain NC, Marchesiello P, Madec G (2011) Interannual variability of the South Pacific Convergence Zone and implications for tropical cyclone genesis. Clim Dyn 36:1881–1896. doi: 10.1007/s00382-009-0716-3 CrossRefGoogle Scholar
  48. Wang G, Hendon H (2007) Sensitivity of Australian rainfall to inter-El Niño variations. J Clim 20:4211–4226. doi: 10.1175/JCLI4228.1 CrossRefGoogle Scholar
  49. Wittenberg AT (2009) Are historical records sufficient to constrain ENSO simulations? Geophys Res Lett 36:L12702. doi: 10.1029/2009GL038710 CrossRefGoogle Scholar
  50. Wittenberg AT, Rosati A, Delworth TL, Vecchi GA, Zeng F (2014) ENSO modulation: is it decadally predictable? J Clim 27:2667–2681. doi: 10.1175/JCLI-D-13-00577.1 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Josephine R. Brown
    • 1
    Email author
  • Pandora Hope
    • 1
  • Joelle Gergis
    • 2
    • 3
  • Benjamin J. Henley
    • 2
  1. 1.Bureau of MeteorologyMelbourneAustralia
  2. 2.School of Earth SciencesUniversity of MelbourneParkvilleAustralia
  3. 3.ARC Centre of Excellence for Climate System ScienceUniversity of MelbourneParkvilleAustralia

Personalised recommendations