Skip to main content

Advertisement

Log in

Effects of vegetation feedback on future climate change over West Africa

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

This study investigates the impact of climate-vegetation interaction on future climate changes over West Africa using a regional climate model with synchronous coupling between climate and natural vegetation, the RegCM4.3.4-CLM-CN-DV. Based on the lateral boundary conditions supplied by MIROC-ESM and CESM under the greenhouse gas Representative Concentration Pathway 8.5, significant increase of vegetation density is projected over the southern part of Sahel, with an increase of leaf area index and a conversion from grass to woody plants around 7–10°N of Sahel. Regardless of whether the model treats vegetation as static or dynamic, it projects an increase of precipitation in eastern Sahel and decrease in the west. The feedback due to projected vegetation change tends to cause a wet signal, enhancing the projected increase or alleviate the decrease of precipitation in JJA in the areas of projected vegetation increase. Its impact is negligible in DJF. Vegetation feedback slightly enhances projected warming in most of West Africa during JJA, but has a significant cooling effect during DJF in regions of strong vegetation changes. Future changes of surface runoff are projected to follow the direction of precipitation changes. While dynamic vegetation feedback enhances the projected increase of soil water content in JJA, it has a drying effect in DJF. The magnitude of projected ET changes is reduced in JJA and increased in DJF due to vegetation dynamics. A high sensitivity of climate projection to dynamic vegetation feedback was found mainly in semiarid areas of West Africa, with little signal in the wet tropics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abiodun B, Pal JS, Afiesimama E, Gutowski W, Adedoyin A (2008) Simulation of West African monsoon using RegCM3 Part II: impacts of deforestation and desertification. Theoret Appl Climatol 93:245–261

    Article  Google Scholar 

  • Alo C, Wang G (2010) Role of dynamic vegetation in regional climate predictions over western Africa. Clim Dyn 35:907–922. doi:10.1007/s00382-010-0744-z

    Article  Google Scholar 

  • Bonan GB (2008) Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320:1444–1449

    Article  Google Scholar 

  • Bonan GB et al (2011) Improving canopy processes in the Community Land Model version 4 (CLM4) using global flux fields empirically inferred from FLUXNET data. J Geophys Res Biogeosci 2005–2012:116

    Google Scholar 

  • Bretherton CS, McCaa JR, Grenier H (2004) A new parameterization for shallow cumulus convection and its application to marine subtropical cloud-topped boundary layers. Part I: Description and 1D results. Monthly Weather Review 132

  • Brovkin V, Claussen M, Petoukhov V, Ganopolski A (1998) On the stability of the atmosphere-vegetation system in the Sahara/Sahel region. J Geophys Res Atmos (1984–2012) 103:31613–31624

  • Charney JG (1975) Dynamics of deserts and droughts in Sahel. Q J Roy Meteor Soc 101:193–202

    Article  Google Scholar 

  • Claussen M (1997) Modeling bio-geophysical feedback in the African and Indian monsoon region. Clim Dyn 13:247–257

    Article  Google Scholar 

  • Claussen M, Kubatzki C, Brovkin V, Ganopolski A, Hoelzmann P, Pachur HJ (1999) Simulation of an abrupt change in Saharan vegetation in the mi-Holocene. Geophys Res Lett 26:2037–2040

    Article  Google Scholar 

  • Dekker S, Boer H, Brovkin V, Fraedrich K, Wassen M, Rietkerk M (2010) Biogeophysical feedbacks trigger shifts in the modelled vegetation-atmosphere system at multiple scales. Biogeosciences 7:1237–1245

    Article  Google Scholar 

  • Delire C, Foley JA, Thompson S (2004) Long–term variability in a coupled atmosphere–biosphere model. J Clim 17:3947–3959. doi:10.1175/1520-0442

    Article  Google Scholar 

  • Delire C, De Noblet–Ducoudre N, Sima A, Gouriand I (2011) Vegetation dynamics enhancing long–term climate variability confirmed by two models. J Clim 24:2238–2257. doi:10.1175/2010JCLI3664.1

    Article  Google Scholar 

  • deMenocal P, Ortiz J, Guilderson T, Adkins J, Sarnthein M, Baker L, Yarusinsky M (2000) Abrupt onset and termination of the African Humid Period: rapid climate responses to gradual insolation forcing. Quat Sci Rev 19:347–361

    Article  Google Scholar 

  • Dickinson RE, Henderson-Sellers A, Kenedy PJ (1993) Biosphere-Atmosphere Transfer Scheme (BATS) version 1e as coupled to the NCAR Community Climate ModelNCAR/TN-387+STR, 72 pp

  • Emanuel KA, Živkovic-Rothman M (1999) Development and evaluation of a convection scheme for use in climate models. J Atmos Sci 56:1766–1782

    Article  Google Scholar 

  • Fujisaka S, Bell W, Thomas N, Hurtado L, Crawford E (1996) Slash-and-burn agriculture, conversion to pasture, and deforestation in two Brazilian Amazon colonies. Agric Ecosyst Environ 59:115–130

    Article  Google Scholar 

  • Giannini A, Saravanan R, Chang P (2003) Oceanic forcing of Sahel rainfall on interannual to interdecadal time scales. Science 302:1027–1030. doi:10.1126/science.1089357

    Article  Google Scholar 

  • Giannini A, Biasutti M, Verstraete MM (2008) A climate model-based review of drought in the Sahel: desertification, the re-greening and climate change. Glob Planet Change 64:119–128

    Article  Google Scholar 

  • Giorgi F et al (2012) RegCM4: model description and preliminary tests over multiple CORDEX domains. Clim Res 52:7–29. doi:10.3354/cr01018

    Article  Google Scholar 

  • Gotangco Castillo CK, Levis S, Thornton P (2012) Evaluation of the new CNDV option of the Community Land Model: effects of dynamic vegetation and interactive nitrogen on CLM4 means and variability. J Clim 25:3702–3714

    Article  Google Scholar 

  • Grell GA, Dudhia J, Stauffer DR (1994) Description ofthe fifth generation Penn State/NCAR Mesoscale Model (MM5), 121 pp

  • Grenier H, Bretherton CS (2001) A moist PBL parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Mon Weather Rev 129:357–377

    Article  Google Scholar 

  • Hoffmann WA, Jackson RB (2000) Vegetation–climate feedbacks in the conversion of tropical savanna to grassland. J Clim 13:1593–1602

    Article  Google Scholar 

  • Hulme M, Doherty R, Ngara T, New M, Lister D (2001) African climate change: 1900–2100. Clim Res 17:145–168

    Article  Google Scholar 

  • Irizarry-Ortiz MM, Wang GL, Eltahir EAB (2003) Role of the biosphere in the mid-Holocene climate of West Africa. J Geophys Res Atmos 108. doi:10.1029/2001JD000989

  • Jiang D, Zhang Y, Lang X (2011) Vegetation feedback under future global warming. Theoret Appl Climatol 106:211–227

    Article  Google Scholar 

  • Kiehl JT, Hack JJ, Bonan GB, Boville BA, Briegleb BP, Williamson DL, Rasch PJ (1996) Description of the NCAR Community Climate Model (CCM3)

  • Kluzek E (2012) CESM research tools: CLM4 in CESM1.0.4 user’s guide documentation. NCAR

  • Kröpelin S et al (2008) Climate-driven ecosystem succession in the Sahara: the past 6000 years. Science 320:765–768

    Article  Google Scholar 

  • Kucharski F, Zeng N, Kalnay E (2013) A further assessment of vegetation feedback on decadal Sahel rainfall variability. Clim Dyn 40:1453–1466

    Article  Google Scholar 

  • Lawrence PJ, Chase TN (2007) Representing a new MODIS consistent land surface in the Community Land Model (CLM 3.0). J Geophys Res 112:G01023. doi:10.1029/2006jg000168

    Google Scholar 

  • Lebel T, Ali A (2009) Recent trends in the Central and Western Sahel rainfall regime (1990–2007). J Hydrol 375:52–64

    Article  Google Scholar 

  • Legates DR, Willmott CJ (1990a) Mean seasonal and spatial variability in gauge—corrected, global precipitation. Int J Climatol 10:111–127

    Article  Google Scholar 

  • Legates DR, Willmott CJ (1990b) Mean seasonal and spatial variability in global surface air temperature. Theoret Appl Climatol 41:11–21

    Article  Google Scholar 

  • Levis S, Bonan GB, Vertenstein M et al (2004) The community land model’s dynamic global vegetation model (CLM-DGVM): technical description and user’s guide NCAR/TN-459+IA

  • Liu Z, Notaro M, Kutzbach J, Liu N (2006) Assessing global vegetation-climate feedbacks from observations. J Clim 19:787–814

    Article  Google Scholar 

  • Liu Z et al (2007) Simulating the transient evolution and abrupt change of Northern Africa atmosphere–ocean–terrestrial ecosystem in the Holocene. Q Sci Rev 26:1818–1837

    Article  Google Scholar 

  • Martin G, Levine R (2012) The influence of dynamic vegetation on the present-day simulation and future projections of the South Asian summer monsoon in the HadGEM2 family. Earth Syst Dyn Discuss 3:759–799

    Article  Google Scholar 

  • McPherson RA (2007) A review of vegetation-atmosphere interactions and their influences on mesoscale phenomena. Prog Phys Geogr 31:261–285

    Article  Google Scholar 

  • Mortimore MJ, Adams WM (2001) Farmer adaptation, change and ‘crisis’ in the Sahel. Glob Environ Change 11:49–57

    Article  Google Scholar 

  • Moss RH et al (2010) The next generation of scenarios for climate change research and assessment. Nature 463:747–756

    Article  Google Scholar 

  • Moss R, Babiker M, Brinkman S et al (2008) Towards new scenarios for analysis of emissions, climate change, impacts, and response strategies: technical summary. Intergovernmental Panel on Climate Change, Geneva, pp 15–25

  • Nicholson SE (2013) The West African Sahel: a review of recent studies on the rainfall regime and its interannual variability. ISRN Meteorol 2013:32. doi:10.1105/2013/453521

  • Oleson KW et al (2008) Improvements to the Community Land Model and their impact on the hydrological cycle. J Geophys Res 113:G01021. doi:10.1029/2007jg000563

    Article  Google Scholar 

  • Oleson et al KW (2010) Technical description of version 4.0 of the Community Land Model (CLM)NCAR/TN-478+STR, 257 pp

  • Osborne T, Lawrence D, Slingo J, Challinor A, Wheeler T (2004) Influence of vegetation on the local climate and hydrology in the tropics: sensitivity to soil parameters. Clim Dyn 23:45–61

    Article  Google Scholar 

  • Pal JS, Small EE, Eltahir EA (2000) Simulation of regional‐scale water and energy budgets: representation of subgrid cloud and precipitation processes within RegCM. J Geophys Res Atmos (1984–2012) 105:29579–29594

  • Pielke RA, Avissar R, Raupach M, Dolman AJ, Zeng X, Denning AS (1998) Interactions between the atmosphere and terrestrial ecosystems: influence on weather and climate. Glob Change Biol 4:461–475

    Article  Google Scholar 

  • Prince SD, Colstoun D, Brown E, Kravitz L (1998) Evidence from rain-use efficiencies does not indicate extensive Sahelian desertification. Glob Change Biol 4:359–374

    Article  Google Scholar 

  • Roberts JM, Cabral OMR, Costa JP, McWilliam ALC, Sa TDA (1996) An overview of the leaf area index and physiological measurement during ABRACOS

  • Steiner A et al (2009) Land surface coupling in regional climate simulations of the West African monsoon. Clim Dyn 33:869–892. doi:10.1007/s00382-009-0543-6

    Article  Google Scholar 

  • Stenseth NC, Mysterud A, Ottersen G, Hurrell JW, Chan K-S, Lima M (2002) Ecological effects of climate fluctuations. Science 297:1292–1296

    Article  Google Scholar 

  • Sun S, Wang G (2011) Diagnosing the equilibrium state of a coupled global biosphere-atmosphere model. J Geophys Res Atmos 1984–2012:116

    Google Scholar 

  • Swann AL, Fung IY, Chiang JC (2012) Mid-latitude afforestation shifts general circulation and tropical precipitation. Proc Natl Acad Sci 109:712–716

    Article  Google Scholar 

  • Taylor CM, Lambin EF, Stephenne N, Harding RJ, Essery RL (2002) The influence of land use change on climate in the Sahel. J Clim 15:3615–3629

    Article  Google Scholar 

  • Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498

    Article  Google Scholar 

  • Thornton PE, Rosenbloom NA (2005) Ecosystem model spin-up: estimating steady state conditions in a coupled terrestrial carbon and nitrogen cycle model. Ecol Model 189:25–48

    Article  Google Scholar 

  • Thornton P et al (2002) Modeling and measuring the effects of disturbance history and climate on carbon and water budgets in evergreen needleleaf forests. Agric For Meteorol 113:185–222

    Article  Google Scholar 

  • Tinker PB, Ingram JSI, Struwe S (1996) Effects of slash-and-burn agriculture and deforestation on climate change. Agrocult Ecosyst Environ 58:13–22

    Article  Google Scholar 

  • Tucker CJ et al (2005) An extended AVHRR 8-km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data. Int J Remote Sens 26:4485–4498

    Article  Google Scholar 

  • Wang G (2004) A conceptual modeling study on biosphere-atmosphere interactions and its implications for physically based climate modeling. J Clim 17:2572–2583

    Article  Google Scholar 

  • Wang G, Alo C (2012) Changes in precipitation seasonality in West Africa predicted by RegCM3 and the impact of dynamic vegetation feedback. Int J Geophys. doi:10.1155/2012/597205

    Google Scholar 

  • Wang G, Eltahir EA (2000a) Role of vegetation dynamics in enhancing the low-frequency variability of the Sahel rainfall. Water Resour Res 36:1013–1021. doi:10.1029/1999wr900361

    Article  Google Scholar 

  • Wang G, Eltahir EA (2000b) Biosphere-atmosphere interactions over West Africa. I: development and validation of a coupled dynamic model. Q J R Meteorol Soc 126:1239–1260

    Article  Google Scholar 

  • Wang G, Eltahir EA (2000c) Ecosystem dynamics and the Sahel drought. Geophys Res Lett 27:795–798

    Article  Google Scholar 

  • Wang G, Eltahir E, Foley J, Pollard D, Levis S (2004) Decadal variability of rainfall in the Sahel: results from the coupled GENESIS-IBIS atmosphere-biosphere model. Clim Dyn 22:625–637

    Article  Google Scholar 

  • Wang G, Yu M, Pal J S, Mei R, Bonan G B, Levis S, Thornton P (2015) On the development of a coupled regional climate-vegetation model RCM-CLM-CN-DV and its validation in Tropical Africa. Clim Dyn 54. doi:10.1007/s00382-015-2596-z

  • Watanabe S et al (2011) MIROC-ESM 2010: model description and basic results of CMIP5-20c3m experiments. Geosci Model Dev 4:845–872. doi:10.5194/gmd-4-845-2011

    Article  Google Scholar 

  • Woodward FI (1987) Climate and plant distribution. Cambridge University Press, Cambridge

    Google Scholar 

  • Xue Y (1997) Biosphere feedback on regional climate in tropical north Africa. Q J R Meteorol Soc 123:1483–1515

    Article  Google Scholar 

  • Xue Y, Shukla J (1993) The influence of land surface properties on Sahel climate. Part I: desertification. J Clim 6:2232–2245

    Article  Google Scholar 

  • Yu M, Wang G, Parr D, Ahmed KF (2014) Future changes of the terrestrial ecosystem based on a dynamic vegetation model driven with RCP8.5 climate projections from 19 GCMs. Clim Change 127:257–271

    Article  Google Scholar 

  • Zeng X, Beljaars A (2005) A prognostic scheme of sea surface skin temperature for modeling and data assimilation. Geophys Res Lett 32. doi:10.1029/2005GL023030

  • Zeng N, Neelin JD, Lau K-M, Tucker CJ (1999) Enhancement of interdecadal climate variability in the Sahel by vegetation interaction. Science 286:1537–1540

    Article  Google Scholar 

  • Zheng X, Eltahir EA (1998) The role of vegetation in the dynamics of West African monsoons. J Clim 11:2078–2096

    Article  Google Scholar 

  • Zhou L, Tucker CJ, Kaufmann RK, Al E (2001) Variations in Northern vegetation activity inferred from satellite data of vegetation index during 1981 to 1999. J Geophys Res 106:20069–20083

    Article  Google Scholar 

Download references

Acknowledgments

Funding support for this study was provided by the NSF (AGS-1063986, and AGS-1064008). The authors thank the two anonymous reviewers for their constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guiling Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, M., Wang, G. & Pal, J.S. Effects of vegetation feedback on future climate change over West Africa. Clim Dyn 46, 3669–3688 (2016). https://doi.org/10.1007/s00382-015-2795-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-015-2795-7

Keywords

Navigation