Climate Dynamics

, Volume 49, Issue 3, pp 957–982 | Cite as

Comparison of the Atlantic meridional overturning circulation between 1960 and 2007 in six ocean reanalysis products

  • A. R. KarspeckEmail author
  • D. Stammer
  • A. Köhl
  • G. Danabasoglu
  • M. Balmaseda
  • D. M. Smith
  • Y. Fujii
  • S. Zhang
  • B. Giese
  • H. Tsujino
  • A. Rosati


The mean and variability of the Atlantic meridional overturning circulation (AMOC), as represented in six ocean reanalysis products, are analyzed over the period 1960–2007. Particular focus is on multi-decadal trends and interannual variability at 26.5°N and 45°N. For four of the six reanalysis products, corresponding reference simulations obtained from the same models and forcing datasets but without the imposition of subsurface data constraints are included for comparison. An emphasis is placed on identifying general characteristics of the reanalysis representation of AMOC relative to their reference simulations without subsurface data constraints. The AMOC as simulated in these two sets are presented in the context of results from the Coordinated Ocean-ice Reference Experiments phase II (CORE-II) effort, wherein a common interannually varying atmospheric forcing data set was used to force a large and diverse set of global ocean-ice models. Relative to the reference simulations and CORE-II forced model simulations it is shown that (1) the reanalysis products tend to have greater AMOC mean strength and enhanced variance and (2) the reanalysis products are less consistent in their year-to-year AMOC changes. We also find that relative to the reference simulations (but not the CORE-II forced model simulations) the reanalysis products tend to have enhanced multi-decadal trends (from 1975–1995 to 1995–2007) in the mid to high latitudes of the northern hemisphere.


Atlantic meridional overturning circulation (AMOC) Ocean data assimilation Ocean synthesis Ocean reanalysis  Ocean reconstruction Decadal prediction 



We wish to thank Keith Haines and Maria Valdivieso for early discussions and contributions. D.S. acknowledges the hospitality during a stimulating and pleasant research visit to the Climate and Global Dynamics division at NCAR. This work contributes to the Excellence Initiative “CliSAP” of the Universität Hamburg, funded through the German Science Foundation (DFG). D.M.S. was supported by the joint DECC/Defra Met Office Hadley Centre Climate Programme (GA01101) and the EU FP7 SPECS project. A.R.K. was funded through the NOAA Climate Program Office under the Climate Variability and Predictability Program grants NA09OAR4310163 and NA13OAR4310138, and by the NSF Collaborative Research EaSM2 Grant OCE-1243015. NCAR is sponsored by the National Science Foundation.

Funding information

All relevant funding sources have been disclosed in the Acknowledgments. All authors of this paper provided consent to submit this work to Climate Dynamics.

Compliance with ethical standards

Conflict of interest

There are no potential conflicts of interest that would jeopardize the objectivity of this research.

Human participants/animals

This research did not involve any human participants or animals.


  1. Adcroft A, Campin J, Hill C, Marshall J (2004) Implementation of an atmosphere–ocean general circulation model on the expanded spherical cube. Mon Weather Rev 132(12):2845–2863CrossRefGoogle Scholar
  2. Anderson J (2003) A local least squares framework for ensemble filtering. Mon Weather Rev 131:634–642CrossRefGoogle Scholar
  3. Antonov J, Locarnini R, Boyer T, Mishonov A, Garcia H (2006) World Ocean Atlas 2005, volume 2: salinity. In: Levitus S (ed) NOAA Atlas NESDIS 62. U.S. Government Printing Office, WashingtonGoogle Scholar
  4. Balmaseda M, Smith G, Haines K, Anderson D (2007a) Historical reconstruction of the Atlantic meridional overturning circulation from the ECMWF operational ocean reanalysis. Geophys Res Lett 34(L23):615. doi: 10.1029/2007GL031,645 Google Scholar
  5. Balmaseda M, Dee D, Vidard A, Anderson D (2007b) Multivariate treatment of bias for sequential data assimilation: application to the tropical oceans. Q J R Meteorol Soc 133:167–170CrossRefGoogle Scholar
  6. Balmaseda M, Mogensen K, Weaver A (2012) Evaluation of the ECMWF ocean reanalysis system ORAS4. Q J R Meteorol Soc 139(674):1132–1161CrossRefGoogle Scholar
  7. Beismann J, Barnier B (2004) Variability of the meridional overturning circulation of the North Atlantic: sensitivity to overflows of dense water masses. Ocean Dyn 54(5):537–537CrossRefGoogle Scholar
  8. Bentsen M, Drange H, Furevik T, Zhou T (2004) Simulated variability of the Atlantic meridional overturning circulation. Clim Dyn 22:6–7CrossRefGoogle Scholar
  9. Bersch M (2002) North Atlantic oscillation-induced changes of the upper layer circulation in the northern North Atlantic Ocean. J Geophys Res. doi: 10.1029/2001jc000901 Google Scholar
  10. Bingham R, Hughes C, Roussenov V, Williams R (2007) Meridional coherence of the North Atlantic meridional overturning circulation. Geophys Res Lett 34(L23):606Google Scholar
  11. Bloom S, Takacs L, da Silva A, Ledvina D (1996) Data assimilation using incremental analysis updates. Mon Weather Rev 124:1256–1271CrossRefGoogle Scholar
  12. Böning C, Scheinert M, Dengg J, Biastoch A, Funk A (2006) Decadal variability of subpolar gyre transport and its reverberation in the North Atlantic overturning. Geophys Res Lett. doi: 10.1029/2006GL026,906 Google Scholar
  13. Boyer T et al (2010) World ocean database 2009. In: Levitus S (ed) NOAA Atlas NESDIS 66. U.S. Government Printing Office, WashingtonGoogle Scholar
  14. Brodeau L, Barnier B, Treguier A, Penduff T, Gulev S (2010) An ERA40-based atmospheric forcing for global ocean circulation models. Ocean Model 31:88–104CrossRefGoogle Scholar
  15. Bryden H, Longworth H, Cunningham S (2005) Slowing of the Atlantic meridional overturning circulation at 25N. Nature 438(7068):655–657CrossRefGoogle Scholar
  16. Carton J, Giese B (2008) A reanalysis of ocean climate using Simple Ocean Data Assimilation (SODA). Mon Weather Rev 136:2999–3017CrossRefGoogle Scholar
  17. Casey K, Brandon T, Cornillon P, Evans R (2010) The past, present and future of the AVHRR pathfinder SST program. In: Barale V, Gower J, Alberotanza L (eds) Oceanography from space. Springer, New York. doi: 10.1007/978-90-481-8681-5-16 Google Scholar
  18. Chang YS, Zhang S (2011) Improvement of salinity representation in an ensemble coupled data assimilation system using pseudo salinity profiles. Geophys Res Lett. doi: 10.1029/2011GL048,064 Google Scholar
  19. Chang YS, Zhang S, Rosati A, Delworth T, Stern W (2012) An assessment of oceanic variability for 1960–2010 from the GFDL ensemble coupled data assimilation. Clim Dyn 40(3):775–803Google Scholar
  20. Collins M, Booth B, Bhaskaran B, Harris G, Murphy J, Sexton D, Webb M (2010) Climate model errors, feedbacks and forcings: a comparison of perturbed physics and multi-model ensembles. Clim Dyn 36:1737–1766CrossRefGoogle Scholar
  21. Compo G et al (2011) The twentieth century reanalysis project. Q J R Meteor Soc 137:1–28CrossRefGoogle Scholar
  22. Cunningham S et al (2007) Temporal variability of the Atlantic meridional overturning circulation at 26.5°N. Science 317:935–938CrossRefGoogle Scholar
  23. Curry R, McCartney M, Joyce T (1998) Linking subtropical deep water climate signals to North Atlantic subpolar convection variability. Nature 391:575–577CrossRefGoogle Scholar
  24. Daget N, Weaver A, Balmaseda M (2009) Ensemble estimation of background-error variances in a three-dimensional variational data assimilation system for the global ocean. Q J R Meteorol Soc 135(641):1071–1094CrossRefGoogle Scholar
  25. Danabasoglu G et al (2014) North Atlantic simulations in Coordinated Ocean-ice Reference Experiments phase II (CORE-II). Part I: mean states. Ocean Model 73:76–107CrossRefGoogle Scholar
  26. Danabasoglu G et al (2015) North Atlantic simulations in Coordinated Ocean-ice Reference Experiments phase II (CORE-II). Inter-Annual to Decadal Variability, Part II. Ocean Model (in press)Google Scholar
  27. Danabasoglu G, Bates S, Briegleb B, Jayne SR, Jochum M, Large W, Peacock S, Yeager S (2012) The CCSM4 ocean component. J Clim 25:1361–1389CrossRefGoogle Scholar
  28. de Coëtlogon G, Frankignoul C, Bentsen M, Delon C, Haak H, Masina S, Pardaens A (2006) Gulf stream variability in five oceanic general circulation models. J Phys Ocean 36(11):2119–2135CrossRefGoogle Scholar
  29. Dee D et al (2011) The ERA-interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137(656):553–597CrossRefGoogle Scholar
  30. Delworth T et al (2006) GFDL’s CM2 global coupled climate model. Part I: formulation and simulation characteristics. J Clim 19:643–674CrossRefGoogle Scholar
  31. Delworth T, Mann M (2000) Observed and simulated multidecadal variability in the northern hemisphere. Clim Dyn 16(9):661–676CrossRefGoogle Scholar
  32. Delworth T, Manabe S, Stouffer R (1993) Interdecadal variations of the thermohaline circulation in a coupled ocean–atmosphere model. J Clim 6:1993–2010CrossRefGoogle Scholar
  33. Deshayes J, Frankignoul C (2008) Simulated variability of the circulation in the North Atlantic from 1953 to 2003. J Clim 21(19):4919–4933CrossRefGoogle Scholar
  34. Dickson R, Meincke J, Malmberg S, Lee A (1988) The Great Salinity Anomaly in the northern North Atlantic 1968–1982. Prog Oceanogr 20:103–151CrossRefGoogle Scholar
  35. Eden C, Willebrand J (2001) Mechanisms of interannual to decadal variability of the North Atlantic circulation. J Clim 14:2266–2280CrossRefGoogle Scholar
  36. Fujii Y, Kamachi M (2003) Three dimensional analysis of temperature and salinity in the equatorial Pacific using a variational method with vertical coupled temperature-salinity empirical orthogonal function modes. J Geophys Res 108(C9):3297. doi: 10.1029/2002JC001,745 CrossRefGoogle Scholar
  37. Fujii Y, Kamachi M, Matsumoto S, Ishizaki S (2012) Barrier layer and relevant variability of the salinity field in the equatorial Pacific estimated in an ocean reanalysis experiment. Pure Appl Geophys 169:579–594CrossRefGoogle Scholar
  38. Fujii Y, Tsujino H, Toyoda T, Nakano H (2015) Enhancement of the southward return flow of the Atlantic Meridional Overturning Circulation by data assimilation and its influence in an assimilative ocean simulation forced by CORE-II atmospheric forcing. Clim Dyn. doi: 10.1007/s00382-015-2780-1 Google Scholar
  39. Ganachaud A, Wunsch C (2000) Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data. Nature 408(6811):453–457CrossRefGoogle Scholar
  40. Gent P et al (2011) The Community Climate System Model Version 4. J Clim 24:4973–4991CrossRefGoogle Scholar
  41. Giese B, Ray S (2011) El Niño variability in simple ocean data assimilation (SODA), 1871–2008. J Geophys Res. doi: 10.1029/2010jc006,695 Google Scholar
  42. Goldenberg S, Landsea C, Mestas-Nunẽz A, Gray W (2001) The recent increase in Atlantic hurricane activity: causes and implications. Science 293:474–479CrossRefGoogle Scholar
  43. Gordon C, Cooper C, Senior C, Banks H, Gregory J, Johns T, Mitchell J, Wood R (2000) The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Clim Dyn 16:147–168CrossRefGoogle Scholar
  44. Griffies S (2005) Some ocean model fundamentals. In: Chassignet EP, and J. Verron J (eds) Ocean weather forecasting: an integrated view of oceanography. Springer, BerlinGoogle Scholar
  45. Griffies S, Winton M, Samuels B, Danabasoglu G, Yeager S, Marsland S, Drange H, Bentsen M (2012) Datasets and protocol for the CLIVAR WGOMD Coordinated Ocean sea-ice Reference Experiments (COREs). Technical Report 21/2012, World Climate Research Program (WCRP)Google Scholar
  46. Häkkinen S (1999) A simulation of thermohaline effects of a Great Salinity Anomaly. J Clim 12:1781–1795CrossRefGoogle Scholar
  47. Häkkinen S, Rhines P (2004) Decline of subpolar North Atlantic circulation during the 1990’s. Science 304(5670):555–559CrossRefGoogle Scholar
  48. Hamilton D (1994) GTSPP builds an ocean temperature-salinity database. Earth Syst Monit 4(4):4–5Google Scholar
  49. Heimbach P, Wunsch C, Ponte R, Forget G, Hill C, Utke J (2011) Timescales and regions of the sensitivity of Atlantic meridional volume and heat transport: toward observing system design. Deep-Sea Res II 58(17):1858–1879CrossRefGoogle Scholar
  50. Hirschi J, Marotzke J (2007) Reconstructing the meridional overturning circulation from boundary densities and the zonal wind stress. J Phys Oceanogr 37:743–763CrossRefGoogle Scholar
  51. Hodson D, Sutton R (2012) The impact of resolution on the adjustment and decadal variability of the atlantic meridional overturning circulation in a coupled climate model. Clim Dyn 39:3057–3073CrossRefGoogle Scholar
  52. Holland M, Bailey D, Briegleb B, Light B, Hunke E (2012) Improved sea ice shortwave radiation physics in CCSM4: the impact of melt ponds and aerosols on Arctic sea ice. J Clim 25(5):1413–1430CrossRefGoogle Scholar
  53. Hunke E, Lipscomb W (2008) CICE: the Los Alamos Sea Ice Model Documentation and Software User’s Manual. Version 4.0. Technical Report LA-CC-06-012, T-3 Fluid Dynamics Group, Los Alamos National LaboratoryGoogle Scholar
  54. Ingleby B, Huddleston M (2007) Quality control of ocean temperature and salinity profiles—historical and real-time data. J Mar Syst 65(1–4):158–175CrossRefGoogle Scholar
  55. Johns W et al (2011) Continuous, array-based estimates of Atlantic Ocean heat transport at 26.5°N. J Clim 24:2429–2449CrossRefGoogle Scholar
  56. Kalnay E et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471CrossRefGoogle Scholar
  57. Kanamitsu M, Ebisuzaki W, Woollen J, Yang S, Hnilo J, Fiorino M, Potter G (2002) NCEP-DOE AMIP-II reanalysis (R-2). Bull Am Meteorol Soc 83:1631–1643CrossRefGoogle Scholar
  58. Kanzow T, Cunningham S, Johns W, Hirschi J, Marotzke J, Baringer M, Meinen C, Chidichimo M, Atkinson C, Beal L, Bryden H, Collins J (2010) Seasonal variability of the Atlantic meridional overturning circulation at 26.5°N. J Clim 23(21):5678–5698CrossRefGoogle Scholar
  59. Kieke D, Klein B, Strammac L, Rhein M, Koltermann K (2009) Variability and propagation of Labrador Sea water in the southern subpolar North Atlantic. Deep-Sea Res I 56:1656–1674CrossRefGoogle Scholar
  60. Knight J, Allan R, Folland C, Vellinga M, Mann M (2005) A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys Res Lett 32:L20708. doi: 10.1029/2005GL024,233 CrossRefGoogle Scholar
  61. Köhl A (2015) Evaluation of the GECCO2 ocean synthesis: transports of volume, heat and freshwater in the Atlantic. Q J R Meteorol Soc 141(686):166–181CrossRefGoogle Scholar
  62. Köhl A, Stammer D (2008) Variability of the meridional overturning in the North Atlantic from the 50-year GECCO state estimation. J Phys Oceanogr 38:1913–1930CrossRefGoogle Scholar
  63. Large W, Yeager S (2009) The global climatology of an interannually varying air–sea flux data set. Clim Dyn 33:341–364CrossRefGoogle Scholar
  64. Levitus S, Antonov J, Boyer T, Locarnini R, Garcia H, Mishonov A (2009) Global ocean heat content 1955–2008 in light of recently revealed instrumentation problems. Geophys Res Lett 36:L03706. doi: 10.1029/2008GL037,155 Google Scholar
  65. Locarnini R, Mishonov A, Antonov J, Boyer T, Garcia H, Baranova O, Zweng M, Johnson D (2010) World Ocean Atlas 2009, volume 1: temperature. In: Levitus S (ed) NOAA Atlas NESDIS 68. U.S. Government Printing Office, WashingtonGoogle Scholar
  66. Lohmann K, Drange H, Bentsen M (2009) A possible mechanism for the strong weakening of the North Atlantic subpolar gyre in the mid-1990s. Geophys Res Lett. doi: 10.1029/2009gl039,166 Google Scholar
  67. Madec G (2001) NEMO reference manual, ocean dynamics component. NEMO-OPA. Preliminary version. Note du Pole de modelisation 27, Institut Pierre-Simon Laplace (IPSL), FranceGoogle Scholar
  68. Matei D, Pohnmann H, Jungclas J, Müller W, Haak H, Marotzke J (2012) Two tales of initializing decadal climate prediction experiments with the ECHAM5/MPI-OM model. J Clim 25:8502–8522CrossRefGoogle Scholar
  69. McCarthy G, Frajka-Williams E, Johns WE, Baringer MO, Meinen CS, Bryden HL, Rayner D, Duchez A, Roberts C, Cunningham SA (2012) Observed interannual variability of the Atlantic meridional overturning circulation at 26.5°N. Geophys Res Lett 39:L19609. doi: 10.1029/2012GL052933
  70. McCartney M, Curry R (1993) Transequatorial flow of Antarctic Bottom Water in the western Atlantic Ocean: abyssal geostrophy at the equator. J Phys Oceanogr 23:1264–1276CrossRefGoogle Scholar
  71. Meehl G et al (2009) Decadal prediction: can it be skillful? Bull Am Meteorol Soc 90:1467–1485CrossRefGoogle Scholar
  72. Meehl G et al (2014) Decadal climate prediction: an update from the trenches. Bull Am Met Soc 95(2):243–267CrossRefGoogle Scholar
  73. Mogensen K, Molteni MBR, Weaver A (2012) The NEMOVAR ocean data assimilation system as implemented in the ECMWF ocean analysis system for System 4. ECMWF Tech. Mem. 668, European Centre for Medium-Range Weather Forecasts, Reading, England. Available online at
  74. Molinari R, Fine R, Wilson W, Curry R, Abell J, McCartney M (1998) The arrival of recently formed Labrador Sea water in the Deep Western Boundary Current at 26.5n. Geophys Res Lett 25:2249–2252CrossRefGoogle Scholar
  75. Msadek R et al (2014) Predicting a decadal shift in North Atlantic Climate variability using the GFDL forecast system. J Clim 27(17):6472–6496CrossRefGoogle Scholar
  76. Munoz E, Kirtman B, Weijer W (2011) Varied representation of the Atlantic meridional overturning across multidecadal ocean reanalysis. Deep-Sea Res II 58:1848–1857CrossRefGoogle Scholar
  77. Naveira-Garabato A, Williams A, Bacon S (2014) The three-dimensional overturning circulation of the Southern Ocean during the WOCE era. Prog Oceanogr 120:41–78CrossRefGoogle Scholar
  78. Olsen S, Schmith T (2007) North Atlantic–Arctic Mediterranean exchanges in an ensemble hindcast experiment. J Geophys Res 112:C04,010. doi: 10.1029/2006JC003,838 Google Scholar
  79. Rayner N, Brohan P, Parker D, Folland C, Kennedy J, Vanicek M, Ansell T, Tett S (2006) Improved analyses of changes and uncertainties in sea surface temperature measured in situ since the mid-nineteenth century: the HadSST2 data set. J Clim 19:446–496CrossRefGoogle Scholar
  80. Reynolds R, Rayner N, Smith T, Stokes D, Wang W (2002) An improved in-situ and satellite SST analysis for climate. J Clim 15:1609–1625CrossRefGoogle Scholar
  81. Rhein M, Stramma L, Krahmann G (1998) The spreading of Antarctic bottom water in the tropical Atlantic. Deep-Sea Res I 45:507–527CrossRefGoogle Scholar
  82. Robson J, Sutton R, Smith D (2012) Initialized decadal predictions of the rapid warming of the North Atlantic Ocean in the mid 1990’s. Geophys Res Lett 39(L19):713Google Scholar
  83. Robson J, Sutton R, Smith D (2014) Decadal predictions of the cooling and freshening of the North Atlantic in the 1960s and the role of ocean circulation. Clim Dyn 42(9–10):2353–2365CrossRefGoogle Scholar
  84. Smith D, Murphy J (2007) An objective ocean temperature and salinity analysis using covariances from a global climate model. J Geophys Res. doi: 10.1029/2005JC003,172 Google Scholar
  85. Smith D, Cusack S, Colman A, Holland C, Harris G, Murphy J (2007) Improved surface temperature prediction for the coming decade from a global climate model. Science 317:796–799CrossRefGoogle Scholar
  86. Smith D, Eade R, Dunstone N, Fereday D, Murphy J, Pohlmann H, Scaife A (2010a) Skillful multi-year predictions of atlantic hurricane frequency. Nat Geosci 3:846–849CrossRefGoogle Scholar
  87. Smith D, Eade R, Pohlmann H (2013) A comparison of full-field and anomaly initialization for seasonal to decadal climate prediction. Clim Dyn 41:3325–3338CrossRefGoogle Scholar
  88. Smith R et al (2010b) The Parallel Ocean Program (POP) Reference Manual, Ocean Component of the Community Climate System Model (CCSM) and Community Earth System Model (CESM). LANL Tech. Rep LAUR-10-01853, Los Alamos National Laboratory, Los Alamos, NMGoogle Scholar
  89. Sutton R, Hodson D (2005) Atlantic Ocean forcing of North American and European summer climate. Science 309:115–118CrossRefGoogle Scholar
  90. Talley L (2008) Freshwater transport estimates and the global overturning circulation: shallow, deep and throughflow components. Prog Oceanogr 78(4):257–303CrossRefGoogle Scholar
  91. Tett S, Sherwin T, Shravat A, Browne O (2014) How much has the North Atlantic Ocean overturning circulation changed in the last 50 years? J Clim 27:6325–6342CrossRefGoogle Scholar
  92. Tsujino H, Motoi T, Ishikawa I, Hirabara M, Nakano H, Yamanaka G, Yasuda T, Ishizaki H (2001) Reference manual for the Meteorological Research Institute Community Ocean Model (MRI.COM) Version 3. Technical Report 59, Meteorological Research InstituteGoogle Scholar
  93. Tsujino H, Hirabara M, Nakano H, Yasuda T, Motoi T, Yamanaka G (2011) Simulating present climate of the global ocean–ice system using the Meteorological Research Institute Community Ocean Model (MRI.COM): simulation characteristics and variability in the Pacific sector. J Oceanogr 67:449–479CrossRefGoogle Scholar
  94. Uppala S et al (2005) The ERA-40 re-analysis. Q J R Meteorol Soc 131(612):2961–3012CrossRefGoogle Scholar
  95. Usui N, Ishizaki S, Fujii Y, Tsujino H, Yasuda T, Kamachi M (2006) Research Institute Multivariate Ocean Variational Estimation (MOVE) system: some early results. J Adv Space Res 37:806–822CrossRefGoogle Scholar
  96. Wang W, Köhl A, Stammer D (2010) Estimates of the global ocean volume transports during 1960 through 2001. Geophys Res Lett 37:L15,601. doi: 10.1029/2010GL043,949 Google Scholar
  97. Whitaker J, Compo G, Wei X, Hamill T (2004) Reanalysis without radiosondes using ensemble data assimilation. Mon Weather Rev 132:1190–1200CrossRefGoogle Scholar
  98. Woodruff S et al (2011) ICOADS Release 2.5: extensions and enhancements to the surface marine meteorological archive. Int J Clim 31:951–967CrossRefGoogle Scholar
  99. Wunch C, Heimbach P (2006) Estimated decadal changes in the North Atlantic meridional overturning circulation and heat flux 1993–2004. J Phys Oceanogr 36:2012–2024CrossRefGoogle Scholar
  100. Yashayaev I (2007) Hydrographic changes in the labrador sea, 1960–2005. Prog Oceanogr 73:242–276CrossRefGoogle Scholar
  101. Yeager S, Danabasoglu G (2014) The origins of late-twentieth-century variations in the large-scale North Atlantic circulation. J Clim 27(9):3222–3247CrossRefGoogle Scholar
  102. Yeager S, Karspeck A, Danabasoglu G, Tribbia J, Teng H (2012) A decadal prediction case study: late 20th century North Atlantic Ocean heat content. J Clim 25:5173–5189CrossRefGoogle Scholar
  103. Zhang R, Delworth T (2005) Simulated tropical response to a substantial weakening of the Atlantic thermohaline circulation. J Clim 18(12):1853–1860CrossRefGoogle Scholar
  104. Zhang R, Delworth T (2006) Impact of Atlantic multidecadal oscillations on India/Sahel rainfall and Atlantic hurricanes. Geophys Res Lett 33(L17):712Google Scholar
  105. Zhang S, Rosati A (2010) An inflated ensemble filter for ocean data assimilation with a biased coupled GCM. Mon Weather Rev 138:3905–3931CrossRefGoogle Scholar
  106. Zhang S, Harrison M, Rosati A, Wittenberg A (2007) System design and evaluation of coupled ensemble data assimilation for global oceanic climate studies. Mon Weather Rev 135:3541–3564CrossRefGoogle Scholar
  107. Zhang S, Rosati A, Delworth T (2010) The adequacy of observing systems in monitoring the Atlantic meridional overturning circulation and the North American climate. J Clim 23:5311–5324CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • A. R. Karspeck
    • 1
    Email author
  • D. Stammer
    • 1
  • A. Köhl
    • 1
  • G. Danabasoglu
    • 1
  • M. Balmaseda
    • 1
  • D. M. Smith
    • 1
  • Y. Fujii
    • 1
  • S. Zhang
    • 1
  • B. Giese
    • 1
  • H. Tsujino
    • 1
  • A. Rosati
    • 1
  1. 1.National Center for Atmospheric ResearchBoulderUSA

Personalised recommendations