Climate Dynamics

, Volume 46, Issue 11–12, pp 3499–3515 | Cite as

On the effects of constraining atmospheric circulation in a coupled atmosphere-ocean Arctic regional climate model

Article

Abstract

Impacts of spectral nudging on simulations of Arctic climate in coupled simulations have been investigated in a set of simulations with a regional climate model (RCM). The dominantly circumpolar circulation in the Arctic lead to weak constraints on the lateral boundary conditions (LBCs) for the RCM, which causes large internal variability with strong deviations from the driving model. When coupled to an ocean and sea ice model, this results in sea ice concentrations that deviate from the observed spatial distribution. Here, a method of spectral nudging is applied to the atmospheric model RCA4 in order to assess the potentials for improving results for the sea ice concentrations when coupled to the RCO ocean-sea ice model. The spectral nudging applied to reanalysis driven simulations significantly improves the generated sea ice regarding its temporal evolution, extent and inter-annual trends, compared to simulations with standard LBC nesting. The method is furthermore evaluated with driving data from two CMIP5 GCM simulations for current and future conditions. The GCM biases are similar to the RCA4 biases with ERA-Interim, however, the spectral nudging still improves the surface winds enough to show improvements in the simulated sea ice. For both GCM downscalings, the spectrally nudged version retains a larger sea ice extent in September further into the future. Depending on the sea ice formulation in the GCM, the temporal evolution of the regional sea ice model can deviate strongly.

Keywords

Regional climate model Coupled Arctic Climate change Sea ice Spectral nudging 

References

  1. Alexander M, Bhatt U, Walsh J, Timlin M, Miller J, Scott J (2004) The atmospheric response to realistic Arctic sea ice anomalies in an AGCM during winter. J Clim 17:890–905. doi:10.1175/1520-0442(2004)017<0890:TARTRA>2.0.CO;2 CrossRefGoogle Scholar
  2. Alexandru A, de Elía R, Laprise R, Šeparović L, Biner S (2009) Sensitivity study of regional climate model simulations to large-scale nudging parameters. Mon Weather Rev 137:1666–1686. doi:10.1175/2008MWR2620.1 CrossRefGoogle Scholar
  3. Berg P, Döscher R, Koenigk T (2013) Impacts of using spectral nudging on regional climate model RCA4 simulations of the Arctic. Geosci Model Dev 6:849–859. doi:10.5194/gmd-6-849-2013 CrossRefGoogle Scholar
  4. Cassano J, Higgins M, Seefeldt M (2011) Performance of the weather research and forecasting model for month-long pan-Arctic simulations. Mon Weather Rev 139:3469–3488. doi:10.1175/MWR-D-10-05065.1 CrossRefGoogle Scholar
  5. Chang E, Guo Y, Xia X (2012) CMIP5 multimodel ensemble projection of storm track change under global warming. J Geophys Res. doi:10.1029/2012JD018578 CrossRefGoogle Scholar
  6. Chang E, Guo Y, Xia X, Zheng M (2013) Storm-track activity in IPCC AR4/CMIP3 model simulations. J Clim 26(1):246–260. doi:10.1175/JCLI-D-11-00707.1 CrossRefGoogle Scholar
  7. Comiso JC, Parkinson CL, Gersten R, Stock L (2008) Accelerated decline in the Arctic sea ice cover. Geophys Res Lett 35(1):L01–703. doi:10.1029/2007GL031972 CrossRefGoogle Scholar
  8. Daloz A, Chauvin F, Walsh K, Lavender S, Abbs D, Roux F (2012) The ability of general circulation models to simulate tropical cyclones and their precursors over the North Atlantic main development region. Clim Dyn 39(7–8):1559–1576. doi:10.1007/s00382-012-1290-7 CrossRefGoogle Scholar
  9. Davies H (1976) A lateral boundary formulation for multi-level prediction models. Q J R Meteorol Soc 102:405–418. doi:10.1002/qj.49710243210 Google Scholar
  10. Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Hólm EV, Isaksen L, Kållberg P, Köhler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette J-J, Park B-K, Peubey C, de Rosnay P, Tavolato C, Thépaut J-N, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597. doi:10.1002/qj.828 CrossRefGoogle Scholar
  11. Deser C, Tomas R, Alexander M, Lawrence D (2010) The seasonal atmospheric response to projected Arctic sea ice loss in the late twenty-first century. J Clim 23(2):333–351. doi:10.1175/2009JCLI3053.1 CrossRefGoogle Scholar
  12. Dickson RR, Meincke J, Malmberg SA, Lee AJ (1988) The great salinity anomaly in the northern North Atlantic 1968–1982. Prog Oceanogr 20(2):103–151CrossRefGoogle Scholar
  13. Döscher R, Koenigk T (2013) Arctic rapid sea ice loss events in regional coupled climate scenario experiments. Ocean Sci 9:217–248. doi:10.5194/os-9-217-2013 CrossRefGoogle Scholar
  14. Döscher R, Wyser K, Meier H, Qian M, Redler R (2010) Quantifying Arctic contributions to climate predictability in a regional coupled ocean-ice-atmosphere model. Clim Dyn 34:1157–1176. doi:10.1007/s00382-009-0567-y CrossRefGoogle Scholar
  15. Fetterer FK, Knowles K, Meier W, Savoie M (2009) Sea ice index. Technical report, National Snow and Ice Data Center, Boulder, Colorado, USA. doi:10.7265/N5QJ7F7W
  16. Francis JA, Vavrus SJ (2012) Evidence linking Arctic amplification to extreme weather in mid-latitudes. Geophys Res Lett 39(6):L06–801. doi:10.1029/2012GL051000 CrossRefGoogle Scholar
  17. Glisan JM, Gutowski WJ Jr, Cassano JJ, Higgins ME (2013) Effects of spectral nudging in WRF on Arctic temperature and precipitation simulations. J Clim 26(12):3985–3999. doi:10.1175/JCLI-D-12-00318.1 CrossRefGoogle Scholar
  18. Haak H, Jungclaus J, Mikolajewicz U, Latif M (2003) Formation and propagation of great salinity anomalies. Geophys Res Lett. doi:10.1029/2003GL017065
  19. Haapala J, Lönnroth N, Stössel A (2005) A numerical study of open water formation in sea ice. J Geophys Res 110(C9):1978–2012. doi:10.1029/2003JC002200 CrossRefGoogle Scholar
  20. Hazeleger W, Wang X, Severijns C, Ştefănescu S, Bintanja R, Sterl A, Wyser K, Semmler T, Yang S, van den Hurk B, van Noije T, van der Linden E, van der Wiel K (2012) EC-Earth V2.2: description and validation of a new seamless earth system prediction model. Clim Dyn 39(11):2611–2629. doi:10.1007/s00382-011-1228-5 CrossRefGoogle Scholar
  21. Hodson DL, Keeley SP, West A, Ridley J, Hawkins E, Hewitt HT (2013) Identifying uncertainties in Arctic climate change projections. Clim Dyn 40(11–12): 2849–2865. doi:10.1007/s00382-012-1512-z CrossRefGoogle Scholar
  22. Hong S-Y, Kanamitsu M (2014) Dynamical downscaling: fundamental issues from an NWP point of view and recommendations. Asia-Pac. J Atmos Sci 50(1):83–104. doi:10.1007/s13143-014-0029-2 CrossRefGoogle Scholar
  23. Hunke EC, Dukowicz JK (1997) An elastic-viscous-plastic model for sea ice dynamics. J Phys Oceanogr 27(9):1849–1867. doi:10.1175/1520-0485(1997)027<1849:AEVPMF>2.0.CO;2 CrossRefGoogle Scholar
  24. Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Leetmaa A, Reynolds R, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77(3):437–471. doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2 CrossRefGoogle Scholar
  25. Koenigk T, Brodeau L (2013) Ocean heat transport into the Arctic in the twentieth and twenty-first century in EC-Earth. Clim Dyn 42(11–12):3101–3120. doi:10.1007/s00382-013-1821-x Google Scholar
  26. Koenigk T, Mikolajewicz U, Haak H, Jungclaus J (2006) Variability of Fram Strait sea ice export: causes, impacts and feedbacks in a coupled climate model. Clim Dyn 26(1):17–34. doi:10.1007/s00382-005-0060-1 CrossRefGoogle Scholar
  27. Koenigk T, Mikolajewicz U, Jungclaus J, Kroll A (2009) Sea ice in the Barents Sea: seasonal to interannual variability and climate feedbacks in a global coupled model. Clim Dyn 32:1119–1138. doi:10.1007/s00382-008-0450-2 CrossRefGoogle Scholar
  28. Koenigk T, Döscher R, Nikulin G (2011) Arctic future scenario experiments with a coupled regional climate model. Tellus 63A:69–86. doi:10.1111/j.1600-0870.2010.00474.x CrossRefGoogle Scholar
  29. Koenigk T, Brodeau L, Graversen RG, Karlsson J, Svensson G, Tjernström M, Willen U, Wyser K (2013) Arctic climate change in 21st century CMIP5 simulations with EC-Earth. Clim Dyn 40:1–25. doi:10.1007/s00382-012-1505-y CrossRefGoogle Scholar
  30. Koenigk T, Devasthale A, Karlsson K-G (2014) Summer sea ice albedo in the Arctic in CMIP5 models. Atmos Chem Phys 14:1987–1998. doi:10.5194/acp-14-1987-2014 CrossRefGoogle Scholar
  31. Koenigk T, Berg P, Döscher R (2015) Arctic climate change in an ensemble of regional CORDEX simulations. Polar Res. doi:10.3402/polar.v34.24603
  32. Laprise R, De Elia R, Caya D, Biner S, Lucas-Picher P, Diaconescu E, Leduc M, Alexandru A, Separovic L (2008) Challenging some tenets of regional climate modelling. Meteorol Atmos Phys 100(1–4):3–22. doi:10.1007/s00703-008-0292-9 CrossRefGoogle Scholar
  33. Magnusdottir G, Deser C, Saravanan R (2004) The effects of North Atlantic SST and sea ice anomalies on the winter circulation in CCM3. Part 1: main features and storm track characteristics of the response. J Clim 17:857–876. doi:10.1175/1520-0442(2004)017<0857:TEONAS>2.0.CO;2 CrossRefGoogle Scholar
  34. Marsland SJ, Haak H, Jungclaus JH, Latif M, Röske F (2003) The Max-Planck-Institute global ocean/sea ice model with orthogonal curvilinear coordinates. Ocean Model 5(2):91–127. doi:10.1016/S1463-5003(02)00015-X CrossRefGoogle Scholar
  35. Mårtensson S, Meier HEM, Pemberton P, Haapala J (2012) Ridged sea ice characteristics in the Arctic from a coupled multicategory sea ice model. J Geophys Res 117(C8):1978–2012. doi:10.1029/2010JC006936 CrossRefGoogle Scholar
  36. Massonnet F, Fichefet T, Goosse H, Bitz CM, Philippon-Berthier G, Holland MM, Barriat PY (2012) Constraining projections of summer Arctic sea ice. Cryosphere 6:1383–1394. doi:10.5194/tc-6-1383-2012 CrossRefGoogle Scholar
  37. Meier HEM, Döscher R, Faxén T (2003) A multiprocessor coupled ice-ocean model for the Baltic Sea: application to salt inflow. J Geophys Res 108(C8):1978–2012. doi:10.1029/2000JC000521 CrossRefGoogle Scholar
  38. Meier HM, Höglund A, Döscher R, Andersson H, Löptien U, Kjellström E (2011) Quality assessment of atmospheric surface fields over the Baltic Sea from an ensemble of regional climate model simulations with respect to ocean dynamics. Oceanologia 53:193–227. doi:10.5697/oc.53-1-TI.193 CrossRefGoogle Scholar
  39. Mikolajewicz U, Sein DV, Jacob D, Königk T, Podzun R, Semmler T (2005) Simulating Arctic sea ice variability with a coupled regional atmosphere-ocean-sea ice model. Meteorol Z 14(6):793–800. doi:10.1127/0941-2948/2005/0083 CrossRefGoogle Scholar
  40. Nordström J, Svärd M (2005) Well-posed boundary conditions for the Navier–Stokes equations. SIAM J Numer Anal 43(3):1231–1255. doi:10.1137/040604972 CrossRefGoogle Scholar
  41. Overland JE, Wang M (2010) Large-scale atmospheric circulation changes are associated with the recent loss of Arctic sea ice. Tellus A 62(1):1–9. doi:10.1111/j.1600-0870.2009.00421.x CrossRefGoogle Scholar
  42. Pemperton P, Nilsson J, Meier HE (2014) Arctic Ocean freshwater composition, pathways and transformations from a passive tracer simulation. Tellus A 66:23 988. doi:10.3402/tellusa.v66.23988 Google Scholar
  43. Petoukhov V, Semenov VA (2010) A link between reduced Barents-Kara sea ice and cold winter extremes over northern continents. J Geophys Res 115(D21):1984–2012. doi:10.1029/2009JD013568 CrossRefGoogle Scholar
  44. Randall D, Curry J, Battisti D, Flato G, Grumbine R, Hakkinen S, Martinson D, Preller R, Walsh J, Weatherly J (1998) Status of and outlook for large-scale modeling of atmosphere-ice-ocean interactions in the Arctic. Bull Am Meteorol Soc 79:197–219. doi:10.1175/1520-0477(1998)079<0197:SOAOFL>2.0.CO;2 CrossRefGoogle Scholar
  45. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108(D14):4407. doi:10.1029/2002JD002670 CrossRefGoogle Scholar
  46. Richter-Menge J, Jeffries M (2011) The Arctic, in “State of the Climate in 2010”. Bull Am Meteorol Soc 92(6):S143–S160. doi:10.1175/1520-0477-92.6.S1 Google Scholar
  47. Rinke A, Dethloff K (2000) On the sensitivity of a regional Arctic climate model to initial and boundary conditions. Clim Res 14:101–113. doi:10.3354/cr014101 CrossRefGoogle Scholar
  48. Samuelsson P, Jones C, Willén U, Ullerstig A, Gollvik S, Hansson U, Jansson C, Kjällström E, Nikulin G, Wyser K (2011) The Rossby Centre regional climate model RCA3: model description and performance. Tellus 63A:4–23. doi:10.1111/j.1600-0870.2010.00478.x CrossRefGoogle Scholar
  49. Schweiger A, Lindsay R, Zhang J, Steele M, Stern H, Kwok R (2011) Uncertainty in modeled Arctic sea ice volume. J Geophys Res 116(C8):1978–2012. doi:10.1029/2011JC007084 Google Scholar
  50. Semtner AJ (1976) A model for the thermodynamic growth of sea ice in numerical investigations of climate. J Phys Oceanogr 6(3):379–389. doi:10.1175/1520-0485(1976)006<0379:AMFTTG>2.0.CO;2 CrossRefGoogle Scholar
  51. Shkolnik IM, Efimov SV (2013) Cyclonic activity in high latitudes as simulated by a regional atmospheric climate model: added value and uncertainties. Environ Res Lett. doi:10.1088/1748-9326/8/4/045007
  52. Solomon S (ed) (2007) Climate change 2007-the physical science basis: working group I contribution to the fourth assessment report of the IPCC. Cambridge University PressGoogle Scholar
  53. Steele M, Morley R, Ermold W (2001) PHC: a global ocean hydrography with highquality Arctic Ocean. J Clim 14:2079–2087. doi:10.1175/1520-0442(2001)014<2079:PAGOHW>2.0.CO;2 CrossRefGoogle Scholar
  54. Stevens B, Giorgetta M, Esch M, Mauritsen T, Crueger T, Rast S, Salzmann M, Schmidt H, Bader J, Block K, Brokopf R, Fast I, Kinne S, Kornblueh L, Lohmann U, Pincus R, Reichler T, Roeckner E (2013) Atmospheric component of the MPI-M earth system model: ECHAM6. J Adv Model Earth Syst 5:146–172. doi:10.1002/jame.20015 CrossRefGoogle Scholar
  55. Stroeve JC, Serreze MC, Holland MM, Kay JE, Malanik J, Barrett AP (2012) The Arctic’s rapidly shrinking sea ice cover: a research synthesis. Clim Change 110(3–4):1005–1027. doi:10.1007/s10584-011-0101-1 CrossRefGoogle Scholar
  56. Svärd M, Carpenter MH, Nordström J (2007) A stable high-order finite difference scheme for the compressible Navier–Stokes equations, far-field boundary conditions. J Comput Phys 225(1):1020–1038. doi:10.1016/j.jcp.2007.01.023 CrossRefGoogle Scholar
  57. Symon C, Arris L, Heal B (ed) (2005) Arctic climate impact assessment. Cambridge University Press, New YorkGoogle Scholar
  58. Šeparović L, Elía R, Laprise R (2012) Impact of spectral nudging and domain size in studies of RCM response to parameter modification. Clim Dyn 38:1325–1343. doi:10.1007/s00382-011-1072-7 CrossRefGoogle Scholar
  59. Uppala M, Kållberg P, Simmons A, Andrae U, Bechtold VDC, Fiorino M, Gibson J, Haseler J, Hernandez A, Kelly G, Li X, Onogi K, Saarinen S, Sokka N, Allan R, Andersson E, Arpe K, Balmaseda M, Beljaars A, de Berg LV, Bormann N, J B, Caires S, Chevallier F, Dethof A, Dragosavac M, Fischer M, Fuentes M, Hagemann S, Hólm E, Hoskins B, Isaksen L, Janssen P, Jenne R, Nally AM, Mahfouf J-F, Morcrette J-J, Rayner N, Saunders R, Simon P, Sterl A, Trenberth K, Untch A, Vasiljevic D, Viterbo P, Woolen J (2005) The ERA40 re-analysis. Q J R Meteorol Soc 131:2961–3012Google Scholar
  60. Vavrus SJ, Holland M, Jahn A, Bailey DA, Blazey BA (2012) Twenty-first-century Arctic climate change in CCSM4. J Clim 25(8):2696–2710. doi:10.1175/JCLI-D-11-00220.1 CrossRefGoogle Scholar
  61. von Storch H, Langenberg H, Feser F (2000) A spectral nudging technique for dynamical downscaling purposes. Mon Weather Rev 128:3664–3673CrossRefGoogle Scholar
  62. Wyser K, Jones C, Du P, Girard E, Willén U, Cassano J, Christensen J, Curry J, Dethloff K, Haugen J-E, Jacob D, Køltzow M, Laprise R, Lynch A, Pfeifer S, Rinke A, Serreze M, Shaw M, Tjernström M, Zagar M (2008) An evaluation of Arctic cloud and radiation processes during the SHEBA year: simulation results from eight Arctic regional climate models. Clim Dyn 30:203–223. doi:10.1007/s00382-007-0286-1 CrossRefGoogle Scholar
  63. Yang S, Christensen JH (2012) Arctic sea ice reduction and European cold winters in CMIP5 climate change experiments. Geophys Res Lett 39(20):L20 707. doi:10.1029/2012GL053338 Google Scholar
  64. Zhang J, Rothrock DA (2003) Modeling global sea ice with a thickness and enthalpy distribution model in generalized curvilinear coordinates. Mon Weather Rev 131(5):681–697. doi:10.1175/1520-0493(2003)131<0845:MGSIWA>2.0.CO;2 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.SMHINorrköpingSweden

Personalised recommendations