Skip to main content

Enhancement of the southward return flow of the Atlantic Meridional Overturning Circulation by data assimilation and its influence in an assimilative ocean simulation forced by CORE-II atmospheric forcing

Abstract

This paper examines the difference in the Atlantic Meridional Overturning Circulation (AMOC) mean state between free and assimilative simulations of a common ocean model using a common interannual atmospheric forcing. In the assimilative simulation, the reproduction of cold cores in the Nordic Seas, which is absent in the free simulation, enhances the overflow to the North Atlantic and improves AMOC with enhanced transport of the deeper part of the southward return flow. This improvement also induces an enhanced supply of North Atlantic Deep Water (NADW) and causes better representation of the Atlantic deep layer despite the fact that correction by the data assimilation is applied only to temperature and salinity above a depth of 1750 m. It also affects Circumpolar Deep Water in the Southern Ocean. Although the earliest influence of the improvement propagated by coastal waves reaches the Southern Ocean in 10–15 years, substantial influence associated with the arrival of the renewed NADW propagates across the Atlantic Basin in several decades. Although the result demonstrates that data assimilation is able to improve the deep ocean state even if there is no data there, it also indicates that long-term integration is required to reproduce variability in the deep ocean originating from variations in the upper ocean. This study thus provides insights on the reliability of AMOC and the ocean state in the Atlantic deep layer reproduced by data assimilation systems.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  • Antonov JI, Seidov D, Boyer TP, Locarnini RA, Mishonov AV, Garcia HE, Baranova OK, Zweng MM, Johnson DR (2010) World Ocean Atlas 2009, volume 2: salinity. In: Levitus S (ed) NOAA Atlas NESDIS, 69. U.S. Government Printing Office, Washington, DC, p 184

    Google Scholar 

  • Balmaseda MA, Smith GC, Haines K, Anderson D, Palmer TN, Vidard A (2007) Historical reconstruction of the Atlantic Meridional Overturning Circulation from the ECMWF operational ocean reanalysis. Geophys Res Lett 34(23):L23615. doi:10.1029/2007GL031645

    Article  Google Scholar 

  • Balmaseda MA, Hernandez F, Storto A, Palmer MD, Alves O, Shi L, Smith GC, Toyoda T, Valdivieso M, Barnier B, Behringer D, Boyer T, Chang YS, Chepurin GA, Ferry N, Forget G, Fujii Y, Good S, Guinehut S, Haines K, Ishikawa Y, Keeley S, Köhl A, Lee T, Martin M, Masina S, Masuda S, Meyssignac B, Mogensen K, Parent L, Peterson KA, Tang YM, Yin Y, Vernieres G, Wang X, Waters J, Wedd R, Wang O, Xue Y, Chevallier M, Lemieux JF, Dupont F, Kuragano T, Kamachi M, Awaji T, Caltabiano A, Wilmer-Becker K, Gaillard F (2015) The Ocean Reanalyses Intercomparison Project (ORA-IP). J Operational Oceanogr 8(S1), s80–s97. doi:10.1080/1755876X.2015.1022329

    Article  Google Scholar 

  • Beaird JN, Rhines PB, Eriksen CC (2013) Overflow Waters at the Iceland–Faroe Ridge Observed in Multiyear Seaglider Surveys. J Phys Oceanogr 43(11):2334–2351. doi:10.1175/JPO-D-13-029.1

    Article  Google Scholar 

  • Bell MJ, Martin MJ, Nichols NK (2004) Assimilation of data into an ocean model with systematic errors near the equator. Q J R Meteorol Soc 130(598):873–893. doi:10.1256/qj.02.109

    Article  Google Scholar 

  • Bloom SC, Takacs LL, Da Silva AM, Ledvina D (1996) Data assimilation using incremental analysis updates. Mon Weather Rev 124(6):1256–1271. doi:10.1175/1520-0493(1996)124<1256:DAUIAU>2.0.CO;2

    Article  Google Scholar 

  • Boyer TP, Antonov JI, Baranova OK, Garcia HE, Johnson DR, Locarnini RA, Mishonov AV, O’Brien TD, Seidov D, Smolyar IV, Zweng MM (2009) World Ocean Database 2009. In: Levitus S (ed) NOAA Atlas NESDIS, 66, U.S. Gov. Printing Office, Washington, DC, 216 pp, DVDs

  • Cunningham SA, Kanzow T, Rayner D, Baringer MO, Johns WE, Marotzke J, Longworth HR, Grant EM, Hirschi JJ-M, Bea LM, Meinen CS, Bryden HL (2007) Temporal variability of the Atlantic meridional overturning circulation at 26.5°N. Science 317(5840):935–938. doi:10.1126/science.1141304

    Article  Google Scholar 

  • Danabasoglu G, Yeager SG, Bailey D, Behrens E, Bentsen M, Bi D, Biastoch A, Boning C, Bozec A, Canuto V, Cassou C, Chassignet E, Coward AC, Danilov S, Diansky N, Drange H, Farneti R, Fernandez E, Fogli PG, Forget G, Fujii Y, Griffies SM, Gusev A, Heimbach P, Howard A, Jung T, Kelley M, Large WG, Leboissetier A, Lu J, Madec G, Marsland SJ, Masina S, Navarra A, Nurser AJG, Pirani A, Salas D, Melia Y, Samuels BL, Scheinert M, Sidorenko D, Treguier A-M, Tsujino H, Uotila P, Valcke S, Voldoire A, Wang Q (2014) North Atlantic simulations in Coordinated Ocean-ice Reference Experiments phase II (CORE-II). Part I: Mean states. Ocean Model 73:76–107. doi:10.1016/j.ocemod.2013.10.005

    Article  Google Scholar 

  • Decloedt T, Luther DS (2010) On a Simple Empirical Parameterization of Topography-Catalyzed Diapycnal Mixing in the Abyssal Ocean. J Phys Oceanogr 40(3):487–508. doi:10.1175/2009JPO4275.1

    Article  Google Scholar 

  • Fujii Y, Kamachi M (2003) Three dimensional analysis of temperature and Salinity in the equatorial Pacific using a variational method with vertical coupled temperature–salinity empirical orthogonal function modes. J Geophys Res 108(C9):3297. doi:10.1029/2002JC001745

    Article  Google Scholar 

  • Fujii Y, Ishizaki S, Kamachi M (2005) Application of nonlinear constraints in a three-dimensional variational ocean analysis. J Oceanogr 61(4):655–662. doi:10.1007/s10872-005-0073-8

    Article  Google Scholar 

  • Fujii Y, Kamachi M, Nakaegawa T, Yasuda T, Yamanaka G, Toyoda T, Ando K, Matsumoto S (2011) Assimilating Ocean Observation data for ENSO monitoring and forecasting. Climate Variability—some aspects, challenges and prospects. In: Hannachi A (ed) ISBN:979-953-307-236-3, InTech, Rijeka, Croatia: 75–98. doi:10.5772/30330

  • Fujii Y, Kamachi M, Matsumoto S, Ishizaki S (2012) Barrier layer and relevant variability of the salinity field in the equatorial Pacific estimated in an ocean reanalysis experiment. Pure Appl Geophys 169(3):579–594. doi:10.1007/s00024-011-0387-y

    Article  Google Scholar 

  • Gent PR, McWilliams JC (1990) Isopycnal Mixing in Ocean Circulation Models. J Phys Oeanogr 20(1):150–155. doi:10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2

    Article  Google Scholar 

  • Girton JB, Sanford TB, Käse RH (2001) Synoptic sections of the Denmark Strait overflow. Geophys Res Lett 28:1619–1622

    Article  Google Scholar 

  • Griffies SM, Winton M, Samuels B, Danabasoglu G, Yeager S, Marsland S, Drange H, Bentsen M (2012) Datasets and protocol for the CLIVAR WGOMD Coordinated Ocean sea-ice Reference Experiments (COREs). WCRP Report No. 21/2012

  • Hamilton D (1994) GTSPP builds an ocean temperature–salinity database. Earth Syst Monit 4(4):4–5

    Google Scholar 

  • Hansen B, Østerhus S (2007) Faroe Bank Channel overflow 1995–2005. Prog Oceanogr 75:817–856

    Article  Google Scholar 

  • Hansen B, Turrel WR, Østerhus S (2001) Decreasing overflow from the Nordic seas into the Atlantic Ocean through the Faroe Bank channel since 1950. Nature 411:927–930. doi:10.1038/35082034

    Article  Google Scholar 

  • Hasumi H (2006) CCSR Ocean Component Model (COCO) Version 4.0. Center for Climate System Research, CCSR report no. 25

  • Hirabara M, Tsujino H, Nakano H, Yamanaka G (2012) Formation mechanism of the Weddel Sea Polynya and the impact on the global abyssal ocean. J Oceanogr 68(5):771–796. doi:10.1007/s10872-012-0139-3

    Article  Google Scholar 

  • Hunke EC, Lipscomb WH (2010) CICE: the Los Alamos Sea Ice Model Documentation and Software User’s Manual, version 4.1, LA-CC-06-012, 76 pp

  • Intergovernmental Oceanographic Commission (IOC) (2011) Report of 18th Session of the CLIVAR Scientific Steering Group—SSG18. ICPO Publication Series, 164, 22 pp. http://www.clivar.org/about/ssg/publications

  • Ishii M, Shouji A, Sugimoto S, Matsumoto T (2005) Objective analyses of sea-surface temperature and marine meteorological variables for the 20th century using ICOADS and the KOBE collection. Int J Climatol 25(7):865–879. doi:10.1002/joc.1169

    Article  Google Scholar 

  • Ishizaki H, Motoi T (1999) Reevaluation of the Takano-Onishi scheme for momentum advection on bottom relief in ocean models. J Atmos Ocean Technol 16(12):1994–2010. doi:10.1175/1520-0426(1999)016<1994:ROTTOS>2.0.CO;2

    Article  Google Scholar 

  • Jochumsen K, Quadfasel D, Valdimarsson H, Jonsson S (2012) Variability of the Denmark Strait overflow: moored time series from 1996–2011. J Geophys Res 117(C12):C12003. doi:10.1029/2012JC008244

    Article  Google Scholar 

  • Karspeck AR, Stammer D, Köhl A, Danabasoglu G, Balmaseda M, Smith MD, Fujii Y, Zhang S, Giese B, Tsujino H, Rosati A (2015) Comparison of the Atlantic Meridional Overturning Circulation between 1960 and 2007 in six ocean reanalysis products. Clim Dyn. doi:10.1007/s00382-015-2787-7

  • Killworth PD, Stainforth D, Webb DJ, Paterson SM (1991) The development of a free-surface Bryan–Cox–Semtner ocean model. J Phys Oceanogr 21(9):1333–1348. doi:10.1175/1520-0485(1991)021<1333:TDOAFS>2.0.CO;2

    Article  Google Scholar 

  • Köhl A (2005) Anomalies of meridional overturning: mechanisms in the North Atlantic. J Phys Oceanogr 35(8):1455–1472. doi:10.1175/2007JCLI2081.1

    Article  Google Scholar 

  • Köhl A (2015) Evaluation of the GECCO2 ocean synthesis: transports of volume, heat and freshwater in the Atlantic. Q J R Meteorol Soc 141(686):166–188. doi:10.1002/qj.2347

    Article  Google Scholar 

  • Köhl A, Stammer D (2008a) Decadal sea level changes in the 50-year GECCO ocean synthesis. J Clim 29(9):1876–1890. doi:10.1175/2007JCLI2081.1

    Article  Google Scholar 

  • Köhl A, Stammer D (2008b) Variability of the meridional overturning in the North Atlantic from the 50-year GECCO state estimation. J Phys Oceanogr 38(9):1913–1930. doi:10.1175/2008JPO3775.1

    Article  Google Scholar 

  • Koszalka IM, Haine TWN, Magaldi MG (2013) Fates and travel times of Denmark Strait Overflow Water in the Irminger Basin. J Phys Oceanogr 43(12):2611–2628. doi:10.1175/JPO-D-13-023.1

    Article  Google Scholar 

  • Large WG, Yeager S (2004) Diurnal to decadal global forcing for ocean and sea-ice models: the data sets and flux climatologies. NCAR Tech. Note NCAR/TN-460 + STR

  • Large WG, Yeager SG (2009) The global climatology of an interannually varying air–sea flux data set. Clim Dyn 33:341–364

    Article  Google Scholar 

  • LeBel DA, Smethie WM Jr, Rhein M, Kieke D, Fine RA, Bullister JL, Min D-H, Roether W, Weiss RF, Andrié C, Smythe-Wright D, Jones EP (2008) The formation rate of North Atlantic Deep Water and Eighteen Degree Water calculated from CFC-11 inventories observed during WOCE. Deep Sea Res I 55(8):891–910. doi:10.1016/j.dsr.2008.03.009

    Article  Google Scholar 

  • Locarnini RA, Mishonov AV, Antonov JI, Boyer TP, Garcia HE, Baranova OK, Zweng MH, Johnson DR (2010) World Ocean Atlas 2009, volume 1: temperature. In: Levitus S (ed) NOAA Atlas NESDIS 68. U.S. Government Printing Office, Washington, DC, p 184

    Google Scholar 

  • Lorenc AC, Rawlins F (2005) Why does 4D-Var beat 3D-Var? Q J R Meteorol Soc 131(613):3247–3257. doi:10.1256/qj.05.85

    Article  Google Scholar 

  • Macrander A, Send U, Valdimarsson H, Jónsson S, Käse RH (2005) Interannual changes in the overflow from the Nordic seas into the Atlantic Ocean through Denmark Strait. Geophys Res Lett 32:L06606. doi:10.1029/2004GL021463

    Article  Google Scholar 

  • Masuda S, Awaji T, Sugiura N, Ishikawa Y, Baba K, Horiuchi K, Komori N (2003) Improved estimates of the dynamical state of the North Pacific Ocean from a 4 dimensional variational data assimilation. Geophys Res Lett 30(16):1868. doi:10.1029/2003GL017604

    Article  Google Scholar 

  • Masuda S, Awaji T, Sugiura N, Matthews JP, Toyoda T, Kawai Y, Doi T, Kouketsu S, Igarashi H, Katsumata K, Uchida H, Kawano T, Fukasawa M (2010) Simulated rapid warming of Abyssal North Pacific Waters. Science 329(5989):319–322. doi:10.1126/science.1188703

    Article  Google Scholar 

  • Mauritzen C, Price J, Sanford T, Torres D (2005) Circulation and mixing in the Faroese Channels. Deep Sea Res I 52:883–913

    Article  Google Scholar 

  • Mellor LG, Kantha L (1989) An ice-ocean coupled model. J Geophys Res 94(C8):10937–10954. doi:10.1029/JC094iC08p10937

    Article  Google Scholar 

  • Munoz E, Kirtman B, Weijer W (2011) Varied representation of the Atlantic meridional overturning across multidecadal ocean reanalyses. Deep Sea Res II 58(17–18):1848–1857. doi:10.1016/j.dsr2.2010.10.064

    Article  Google Scholar 

  • Murray RJ (1996) Explicit generation of orthogonal grids for ocean models. J Comput Phys 126(2):251–273. doi:10.1006/jcph.1996.0136

    Article  Google Scholar 

  • Nakano H, Suginohara N (2002) Effects of bottom boundary layer parameterization on reproducing deep and bottom waters in a world ocean model. J Phys Oceanogr 32(4):1209–1227. doi:10.1175/1520-0485(2002)032<1209:EOBBLP>2.0.CO;2

    Article  Google Scholar 

  • Naveira Garabato AC, Williams AP, Bacon S (2014) The three-dimensional overturning circulation of the Southern Ocean during the WOCE era. Prog Oceanogr 120:41–78. doi:10.1016/j.pocean.2013.07.018

    Article  Google Scholar 

  • Prather MJ (1986) Numerical advection by conservation of second order moments. J Geophys Res 91(D6):6671–6681. doi:10.1029/JD091iD06p06671

    Article  Google Scholar 

  • Redi MH (1982) Oceanic isopycnal mixing by coordinate rotation. J Phys Oceanogr 12:1154–1158. doi:10.1175/1520-0485(1982)012<1154:OIMBCR>2.0.CO;2

    Article  Google Scholar 

  • Rudels B, Fahrbach E, Meincke J, Budeus G, Eriksson P (2002) The east Greenland current and its contribution to the Denmark Strait overflow. ICES J Mar Sci 59(6):1133–1154. doi:10.1006/jmsc.2002.1284

    Article  Google Scholar 

  • Smagorinsky J (1963) General circulation experiments with the primitive equations. Mon Weather Rev 91:99–164

    Article  Google Scholar 

  • Smith RD, McWilliams JC (2003) Anisotropic horizontal viscosity for ocean models. Ocean Model 5(2):129–156. doi:10.1016/S1463-5003(02)00016-1

    Article  Google Scholar 

  • Smolarkiewicz PK (1984) A fully multidimensional positive definite advection transport algorism with small implicit diffusion. J Comput Phys 54(2):325–362. doi:10.1016/0021-9991(84)90121-9

    Article  Google Scholar 

  • Storto A, Masina S, Balmaseda M, Guinehut S, Xue Y, Szekely T, Fukumori I, Forget G, Chang Y-S, Good SA, Köhl A, Vernieres G, Ferry N, Peterson A, Behringer D, Ishii M, Masuda S, Fujii Y, Toyoda T, Yin Y, Valdivieso M, Barnier B, Boyer T, Lee T, Gourrion J, Wang O, Heimbach P, Rosati A, Kovach R, Hernandez F, Martin MJ, Kamachi M, Kuragano T, Mogensen K, Alves O, Haines K, Wang X (2015) Steric sea level variability (1993–2010) in an ensemble of ocean reanalyses and objective analyses. Clim Dyn. doi:10.1007/s00382-015-2554-9

  • Toyoda T, Fujii Y, Yasuda T, Usui N, Iwao T, Kuragano T, Kamachi M (2013) Improved analysis of the seasonal-interannual fields by a global ocean data assimilation system. Theor Appl Mech Jpn 61:31–48. doi:10.11345/nctam.61.31

    Google Scholar 

  • Toyoda T, Fujii Y, Kuragano T, Kamachi M, Ishikawa Y, Masuda S, Sato K, Awaji T, Hernandez F, Guinehut S, Martin M, Peterson KA, Good SA, Valdivieso M, Haines K, Storto A, Masina S, Köhl A, Yin Y, Shi L, Alves O, Smith G, Chang Y-S, Vernieres G, Maryland G, Wang X, Forget G, Heimbach P, Wang O, Fukumori I, Lee T, Balmaseda M (2015) Intercomparison and validation of the mixed layer depth fields of global ocean syntheses/reanalyses, Clim Dyn. doi:10.1007/s00382-015-2637-7

  • Troccoli A, Heines K (1999) Use of the temperature–salinity relation in a data assimilation context. J Atmos Ocean Tech 16(12):2011–2025. doi:10.1175/1520-0426(1999)016<2011:UOTTSR>2.0.CO;2

    Article  Google Scholar 

  • Tsujino H, Motoi T, Ishikawa I, Hirabara M, Nakano H, Yamanaka G, Yasuda T, Ishizaki H (2010) Reference manual for the Meteorological Research Institute Community Ocean Model (MRI.COM) Version 3. Technical report of the meteorological research institute, vol 59, 241 pp

  • Tsujino H, Hirabara M, Nakano H, Yasuda T, Motoi T, Yamanaka G (2011) Simulating present climate of the global ocean-ice system using the Meteorological Research Institute Community Ocean Model (MRI.COM): simulation characteristics and variability in the Pacific sector. J Oceanogr 67(4):449–479. doi:10.1007/s10872-011-0050-3

    Article  Google Scholar 

  • Umlauf L, Burchard H (2003) A generic length-scale equation for geophysical turbulence models. J Mar Res 61(2):235–265. doi:10.1357/002224003322005087

    Article  Google Scholar 

  • Usui N, Ishizaki S, Fujii Y, Tsujino H, Yasuda T, Kamachi M (2006) Meteorological Research Institute Multivariate Ocean Variational Estimation (MOVE) System: some early results. J Adv Space Res 37(4):806–822. doi:10.1016/j.asr.2005.09.022

    Article  Google Scholar 

  • Wunsch C, Heimbach P (2006) Decadal changes in the North Atlantic meridional overturning and heat flux. J Phys Oceanogr 36(11):2012–2024. doi:10.1175/JPO2957.1

    Article  Google Scholar 

  • Yukimoto S, Yoshimura H, Hosaka M, Sakami T, Tsujino H, Hirabara M, Tanaka TY, Deushi M, Obata A, Nakano H, Adachi Y, Shindo E, Yabu S, Ose T, Kitoh A (2011) Meteorological Research Institute Earth System Model Version 1 (MRI-ESM1)—Model Description—technical report of the meteorological research institute, vol 64, 83 pp. http://www.mri-jma.go.jp/Publish/Technical/index_en.html

  • Yukimoto S, Adachi Y, Hosaka M, Sakami T, Yoshimura H, Hirabara M, Tanaka TY, Shindo E, Tsujino H, Deushi M, Mizuta R, Yabu S, Obata A, Nakano H, Koshiro T, Ose T, Kitoh A (2012) A New Global Climate Model of Meteorological Research Institute: MRI-CGCM3—model description and basic performance. J Meteorol Soc Jpn 90A:23–64. doi:10.2151/jmsj.2012-A02

    Article  Google Scholar 

  • Zheng Y, Giese BS (2009) Ocean heat transport in Simple Ocean Data Assimilation: structure and mechanisms. J Geophys Res 114(C11):C11009. doi:10.1029/2008JC005190

    Article  Google Scholar 

Download references

Acknowledgments

We thank Dr. G. Danabasoglu for advising us to perform this comparison study. We thank Dr. M. Balmaseda as well for her support and encouragement. We also thanks anonymous reviewers for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yosuke Fujii.

Ethics declarations

Funding

This study was funded by Meteorological Research Institute, Japan Meteorological Agency.

Conflict of interest

The authors declare no conflict of interest.

Additional information

This paper is a contribution to the special issue on Ocean estimation from an ensemble of global ocean reanalyses consisting of papers from the Ocean Reanalyses Intercomparsion Project (ORAIP), coordinated by CLIVAR-GSOP and GODAE OceanView. The special issue also contains specific studies using single reanalysis systems.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fujii, Y., Tsujino, H., Toyoda, T. et al. Enhancement of the southward return flow of the Atlantic Meridional Overturning Circulation by data assimilation and its influence in an assimilative ocean simulation forced by CORE-II atmospheric forcing. Clim Dyn 49, 869–889 (2017). https://doi.org/10.1007/s00382-015-2780-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-015-2780-1

Keywords

  • Atlantic Meridional Overturning Circulation (AMOC)
  • Ocean Reanalyses Intercomparison Project (ORA-IP)
  • Coordinated Ocean-ice Reference Experiment II (CORE-II)
  • Data assimilation
  • Ocean general circulation model