Climate Dynamics

, Volume 46, Issue 9–10, pp 2961–2976 | Cite as

Bias correction of the CCSM4 for improved regional climate modeling of the North American monsoon

  • Jonathan D. D. Meyer
  • Jiming JinEmail author


This study investigates how a form of bias correction using linear regression improves the limitations of the community climate system model (CCSM) version 4 when it is dynamically downscaled with the Weather Research and Forecasting (WRF) model for the North American monsoon (NAM). Long-term biases in the CCSM dataset were removed using the climate forecast system reanalysis (CFSR) dataset as a baseline, from which a physically consistent set of bias-corrected variables were created. To quantitatively identify the effects of CCSM data on the NAM simulations, three 32-year climatologies were generated with WRF driven by (1) CFSR, (2) original CCSM, and (3) bias-corrected CCSM data. The WRF-CFSR simulations serve as a baseline for comparison. With the bias correction, onset dates simulated by WRF bias-corrected CCSM data were generally within a week of the WRF-CFSR climatology, while WRF using the original CCSM data occur up to 3–4 weeks too early over the core of the NAM. Additionally, bias-correction led to improvements in the mature phase of the NAM, reducing August root-mean-square-error values by 26 % over the core of the NAM and 36 % over the northern periphery. Comparison of the CFSR and the bias-corrected CCSM climatologies showed marked consistency in the general evolution of the NAM system. Dry biases in the NAM precipitation existed in each climatology with the original CCSM performing the poorest when compared to observations. The poor performance of the original CCSM simulations stem from biases in the thermodynamic profile supplied to the model through lateral boundary conditions. Bias-correction improved the excessive capping inversions, and mid-level mixing ratio dry biases (2–3 g kg−1) present in the CCSM simulations. Improvements in the bias-corrected CCSM data resulted in greater convective activity and a more representative seasonal distribution of precipitation.


North American monsoon Regional climate modeling Bias correction 



This work was supported by the National Science Foundation Microsystem Program project NSFEF-1065730. The authors would like to acknowledge and thank Dr. David Gochis of the National Center of Atmospheric Research and the anonymous reviewers who provided valuable comments to improve this study.


  1. Adams D, Comrie A (1997) The North American monsoon. Bull Am Meteorol Soc 78:2197–2213. doi: 10.1175/1520-0477(1997)078<2197:TNAM>2.0.CO;2 CrossRefGoogle Scholar
  2. Antic S, Laprise R, Denis B, de Elia R (2004) Testing the downscaling ability of a one-way nested regional climate model in regions of complex topography. Clim Dyn 23:473–493. doi: 10.1007/s00382-004-0438-5 CrossRefGoogle Scholar
  3. Barlow M, Nigam S, Berbery EH (1998) Evolution of the North American monsoon system. J Clim 11:2238–2257. doi: 10.1175/1520-0442(1998)011<2238:EOTNAM>2.0.CO;2 CrossRefGoogle Scholar
  4. Bruyère CL, Done JM, Holland GJ, Fredrick S (2013) Bias corrections of global models for regional climate simulations of high-impact weather. Clim Dyn. doi: 10.1007/s00382-013-2011-6 Google Scholar
  5. Bukovsky MS, Gochis DJ, Mearns LO (2013) Towards assessing NARCCAP regional climate model credibility for the North American monsoon: current climate simulations. J Clim 26:8802–8826. doi: 10.1175/JCLI-D-12-00538.1 CrossRefGoogle Scholar
  6. Carvalho LMV, Jones C (2013) CMIP5 simulations of low-level tropospheric temperature and moisture over the tropical Americas. J Clim 26:6257–6286. doi: 10.1175/JCLI-D-12-00532.1 CrossRefGoogle Scholar
  7. Castro CL, Chang H-I, Dominguez F, Carrillo C, Schemm J-K, Juang H-M (2012) Can a regional climate model improve the ability to forecast the North American monsoon? J Clim 25:8212–8237. doi: 10.1175/JCLI-D-11-00441.1 CrossRefGoogle Scholar
  8. Christensen JH, Boberg F, Christensen OB, Lucas-Picher P (2008) On the need for bias correction of regional climate change projections of temperature and precipitation. Geophys Res Lett 35:L20709. doi: 10.1029/2008gl035694 CrossRefGoogle Scholar
  9. Colette A, Vautard R, Vrac M (2012) Regional climate downscaling with prior statistical correction of the global climate forcing. Geophys Res Lett 39:L13707. doi: 10.1029/2012gl052258 CrossRefGoogle Scholar
  10. Comrie AC, Glenn EC (1998) Principal components-based regionalization of precipitation regimes across the southwest United States and northern Mexico, with an application to monsoon precipitation variability. Clim Res 10:201–215. doi: 10.3354/cr010201 CrossRefGoogle Scholar
  11. Cook KH, Vizy EK (2008) Effects of twenty-first-century climate change on the Amazon rain forest. J Clim 21:542–560. doi: 10.1175/2007JCLI1838.1 CrossRefGoogle Scholar
  12. Cook KH, Meehl GA, Arblaster JM (2012) Monsoon regimes and processes in CCSM4. Part II: African and American monsoon systems. J Clim 25:2609–2621. doi: 10.1175/JCLI-D-11-00185.1 CrossRefGoogle Scholar
  13. Denis B, Laprise R, Caya D, Cote J (2002) Downscaling ability of one-way nested regional climate models: the Big-Brother Experiment. Clim Dyn 18:627–646. doi: 10.1007/s00382-001-0201-0 CrossRefGoogle Scholar
  14. Dickinson RE, Errico RM, Giorgi F, Bates GT (1989) A regional climate model for the western United States. Clim Change 15(3):383–422. doi: 10.1007/bf00240465 CrossRefGoogle Scholar
  15. Douglas MW (1995) The summertime low level jet over the Gulf of California. Mon Weather Rev 123:2334–2347. doi: 10.1175/1520-0493(1995)123<2334:tslljo>;2 CrossRefGoogle Scholar
  16. Douglas MW, Maddox RA, Howard K, Reyes S (1993) The Mexican monsoon. J Clim 6:1665–1677. doi: 10.1175/1520-0442(1993)006<1665:tmm>;2 CrossRefGoogle Scholar
  17. Douglas MW, Valdez-Manzanilla A, Garcia Cueto R (1998) Diurnal variation and horizontal extent of the low-level jet over the northern Gulf of California. Mon Weather Rev 126:2017–2025. doi: 10.1175/1520-0493(1998)126<2017:dvaheo>;2 CrossRefGoogle Scholar
  18. Dudhia J (1989) Numerical study of convection observed during the winter monsoon experiment using a mesoscale two dimensional model. J Atmos Sci 46:3077–3107. doi: 10.1175/1520-0469(1989)046<3077:nsocod>;2 CrossRefGoogle Scholar
  19. Geil KL, Serra YL, Zeng X (2013) Assessment of CMIP5 model simulations of the North American monsoon system. J Clim 26:8787–8801. doi: 10.1175/jcli-d-13-00044.1 CrossRefGoogle Scholar
  20. Gent PR et al (2011) The community climate system model version 4. J Clim 24:4973–4991. doi: 10.1175/2011jcli4083.1 CrossRefGoogle Scholar
  21. Giorgi F, Mearns LO (1991) Approaches to the simulation of regional climate change. Rev Geophys 29:191–216. doi: 10.1029/90rg02636 CrossRefGoogle Scholar
  22. Grell GA, Dévényi D (2002) A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys Res Lett. doi: 10.1029/2002gl015311 Google Scholar
  23. Gutzler DS et al (2009) Simulations of the 2004 North American monsoon: NAMAP2. J Clim 22:6716–6740. doi: 10.1175/2009jcli3138.1 CrossRefGoogle Scholar
  24. Hardy B (1998) ITS-90 formulations for vapor pressure, frostpoint temperature, dewpoint temperature, and enhancement factors in the range −100 to +100 C. In: Proceedings of the third international symposium on humidity and moisture, Teddington, London, EnglandGoogle Scholar
  25. Harris I, Jones PD, Osborn TJ, Lister DH (2014) Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 Dataset. Int J Climatol 34:623–642. doi: 10.1002/joc.3711 CrossRefGoogle Scholar
  26. Higgins RW, Yao Y, Wang XL (1997) Influence of the North American monsoon system on the US summer precipitation regime. J Clim 10:2600–2622. doi: 10.1175/1520-0442(1997)010<2600:iotnam>;2 CrossRefGoogle Scholar
  27. Higgins RW et al (2006) The NAME 2004 field campaign and modeling strategy. Bull Am Meteorol Soc 87:79–94. doi: 10.1175/bams-87-1-79 CrossRefGoogle Scholar
  28. Holton JR, Hakim GJ (2013) An introduction to dynamic meteorology. Academic press, LondonGoogle Scholar
  29. Jiménez PA, Dudhia J, González-Rouco JF, Navarro J, Montávez JP, García-Bustamante E (2012) A revised scheme for the WRF surface layer formulation. Mon Weather Rev 140:898–918. doi: 10.1175/mwr-d-11-00056.1 CrossRefGoogle Scholar
  30. Jin J, Wang S-Y, Gillies R (2011) An improved dynamical downscaling for the western United States. Clim Change Res Technol Adapt Mitig. doi: 10.5772/22991 Google Scholar
  31. Kanamaru H, Kanamitsu M (2007) Scale-selective bias correction in a downscaling of global analysis using a regional model. Mon Weather Rev 135:334–350. doi: 10.1175/mwr3294.1 CrossRefGoogle Scholar
  32. Kirtman BP, Fan Y, Schneider EK (2002) The COLA global coupled and anomaly coupled ocean-atmosphere GCM. J Clim 15:2301–2320. doi: 10.1175/1520-0442(2002)015<2301:tcgcaa>;2 CrossRefGoogle Scholar
  33. Lawrence DM et al (2011) Parameterization improvements and functional and structural advances in version 4 of the Community Land Model. J Adv Model Earth Syst 3:M03001. doi: 10.1029/2011ms000045 Google Scholar
  34. Lin Y-L, Farley R, Orville H (1983) Bulk parameterization of the snow field in a cloud model. J Clim Appl Meteorol 22:1065–1092. doi: 10.1175/1520-0450(1983)022<1065:bpotsf>;2 CrossRefGoogle Scholar
  35. McGregor JL (1997) Regional climate modelling. Meteorol Atmos Phys 63:105–117. doi: 10.1007/bf01025367 CrossRefGoogle Scholar
  36. Meehl GA, Arblaster JM, Lawrence DM, Seth A, Schneider EK, Kirtman BP, Min D (2006) Monsoon regimes in the CCSM3. J Clim 19:2482–2495. doi: 10.1175/jcli3745.1 CrossRefGoogle Scholar
  37. Misra V (2007) Addressing the issue of systematic errors in a regional climate model. J Clim 20:801–818. doi: 10.1175/jcli4037.1 CrossRefGoogle Scholar
  38. Misra V, Kanamitsu M (2004) Anomaly nesting: a methodology to downscale seasonal climate simulations from AGCMs. J Clim 17:3249–3262. doi: 10.1175/1520-0442(2004)017<3249:anamtd>;2 CrossRefGoogle Scholar
  39. Misra V, Dirmeyer PA, Kirtman BP (2003) Dynamic downscaling of seasonal simulations over South America. J Clim 16:103–117. doi: 10.1175/1520-0442(2003)016<0103:ddosso>;2 CrossRefGoogle Scholar
  40. Mitchell DL, Ivanova D, Rabin R, Brown TJ, Redmond K (2002) Gulf of California sea surface temperatures and the North American monsoon: mechanistic implications from observations. J Clim 15:2261–2281. doi: 10.1175/1520-0442(2002)015<2261:gocsst>;2 CrossRefGoogle Scholar
  41. Mlawer EJ, Taubman SJ, Brown PD, Iancono MJ, Clough SA (1997) Radiative transfer for in homogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J Geophys Res 102:16663–16682. doi: 10.1029/97jd00237 CrossRefGoogle Scholar
  42. Nakanishi M, Niino H (2006) An improved Mellor–Yamada level-3 model: its numerical stability and application to a regional prediction of advection fog. Bound Layer Meteorol 119:397–407. doi: 10.1007/s10546-005-9030-8 CrossRefGoogle Scholar
  43. Noguer M, Jones R, Murphy J (1998) Sources of systematic errors in the climatology of a regional climate model over Europe. Clim Dyn 14:691–712. doi: 10.1007/s003820050249 CrossRefGoogle Scholar
  44. Pan Z, Takle E, Gutowski W, Turner R (1999) Long simulation of regional climate as a sequence of short segments. Mon Weather Rev 127:38–321. doi: 10.1175/1520-0493(1999)127<0308:lsorca>;2 CrossRefGoogle Scholar
  45. Patricola CM, Cook KH (2009) Northern African climate at the end of the twenty-first century: an integrated application of regional and global climate models. Clim Dyn 35:193–212. doi: 10.1007/s00382-009-0623-7 CrossRefGoogle Scholar
  46. Qian J-H, Seth A, Zebiak S (2003) Reinitialized versus continuous simulations for regional climate downscaling. Mon Weather Rev 131:2857–2874. doi: 10.1175/1520-0493(2003)131<2857:rvcsfr>;2 CrossRefGoogle Scholar
  47. Reynolds RW, Smith TM, Liu C, Chelton DB, Casey KS, Schlax MG (2007) Daily high- resolution-blended analyses for sea surface temperature. J Clim 20:5473–5496. doi: 10.1175/2007jcli1824.1 CrossRefGoogle Scholar
  48. Saha S et al (2010) The NCEP climate forecast system reanalysis. Bull Am Meteorol Soc 91:1015–1057. doi: 10.1175/2010bams3001.1 CrossRefGoogle Scholar
  49. Sato T, Kimura F, Kitoh A (2007) Projection of global warming onto regional precipitation over Mongolia using a regional climate model. J Hydrol 333:144–154. doi: 10.1016/j.jhydrol.2006.07.023 CrossRefGoogle Scholar
  50. Skamarock WC, Klemp JB, Dudhia J, Gill DO, Barker D, Duda MG, Huang X-Y, Wang W (2008) A description of the advanced research WRF version 3. NCAR Technical Note NCAR/TN-475+STR. doi: 10.5065/D68S4MVH
  51. Trenberth KE, Berry JC, Buja LE (1993) Vertical interpolation and truncation of model-coordinate data. NCAR Technical Note NCAR/TN-396+STRGoogle Scholar
  52. Van Vuuren DP et al (2011) The representative concentration pathways: an overview. Clim Change 109:5–31. doi: 10.1007/s10584-011-0148-z CrossRefGoogle Scholar
  53. Warner TT, Peterson RA, Treadon RE (1997) A tutorial on lateral boundary conditions as a basic and potentially serious limitation to regional numerical weather prediction. Bull Am Meteorol Soc 78:2599–2617. doi: 10.1175/1520-0477(1997)078<2599:atolbc>;2 CrossRefGoogle Scholar
  54. White RH, Toumi R (2013) The limitations of bias correcting regional climate model inputs. Geophys Res Lett 40:2907–2912. doi: 10.1002/grl.50612 CrossRefGoogle Scholar
  55. Wu P-L, Lin P-L, Juang H-MH (2009) Local mean bias correction in a regional model downscaling: a case study of the South China Sea summer monsoon of 1998. Mon Weather Rev 137:2869–2892. doi: 10.1175/2009mwr2784.1 CrossRefGoogle Scholar
  56. Xu Z, Yang Z-L (2012) An improved dynamical downscaling method with GCM bias corrections and its validation with 30 years of climate simulations. J Clim 25:6271–6286. doi: 10.1175/jcli-d-12-00005.1 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of Plants Soils and ClimateUtah State UniversityLoganUSA
  2. 2.Department of Watershed ScienceUtah State UniversityLoganUSA

Personalised recommendations