Skip to main content

Advertisement

Log in

Teleconnection responses in multi-GCM driven CORDEX RCMs over Eastern Africa

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The ability of climate models to simulate atmospheric teleconnections provides an important basis for the use and analysis of climate change projections. This study examines the ability of COordinated Regional climate Downscaling EXperiment models, with lateral and surface boundary conditions derived from Coupled Global Climate Models (CGCMs), to simulate the teleconnections between tropical sea surface temperatures and rainfall over Eastern Africa. The ability of the models to simulate the associated changes in atmospheric circulation patterns over the region is also assessed. The models used in the study are Rossby Centre regional atmospheric model (RCA) driven by eight CGCMs and COnsortium for Small scale MOdeling (COSMO) Climate Limited-area Modelling (COSMO-CLM or CCLM) driven by four of the same CGCMs. Teleconnection patterns are examined using correlation, regression and composite analysis. In order to identify the source of the errors, CGCM-driven regional climate model (RCM) results are compared with ERA-Interim driven RCM results. Results from the driving CGCMs are also analyzed. The RCMs driven by reanalysis (quasi-perfect boundary conditions) successfully capture rainfall teleconnections in most examined regions and seasons. Our analysis indicates that most of the errors in simulating the teleconnection patterns come from the driving CGCMs. RCMs driven by MPI-ESM-LR, HadGEM2-ES and GFDL-ESM2M tend to perform relatively better than RCMs driven by other CGCMs. CanESM2 and MIROC5, and their corresponding downscaled results capture the teleconnections in most of the sub-regions and seasons poorly. This highlights the relative importance of CGCM-derived boundary conditions in the downscaled product and the need to improve these as well as the RCMs themselves. Overall, the results produced here will be very useful in identifying and selecting CGCMs and RCMs for the use of climate change projecting over the Eastern Africa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abram NJ, Gagan MK, Cole JE, Hantoro WS, Mudelsee M (2008) Recent intensification of tropical climate variability in the Indian Ocean. Nat Geosci 1(12):849–853

    Article  Google Scholar 

  • Anyah RO, Semazzi FH (2007) Variability of East African rainfall based on multiyear RegCM3 simulations. Int J Climatol 27(3):357–371

    Article  Google Scholar 

  • Bahaga TK, Mengistu Tsidu G, Kucharski F, Diro GT (2015) Potential predictability of the sea‐surface temperature forced equatorial East African short rains interannual variability in the 20th century. Quarterly J R Meteorol Soc 141(686):16–26

    Article  Google Scholar 

  • Baldauf M, Seifert A, Förstner J, Majewski D, Raschendorfer M, Reinhardt T (2011) Operational convective-scale numerical weather prediction with the COSMO model: description and sensitivities. Mon Weather Rev 139(12):3887–3905

    Article  Google Scholar 

  • Behera SK, Luo JJ, Masson S, Delecluse P, Gualdi S, Navarra A, Yamagata T (2005) Paramount impact of the Indian Ocean dipole on the East African short rains: A CGCM study. J Clim 18(21):4514–4530

    Article  Google Scholar 

  • Black E, Slingo J, Sperber KR (2003) An observational study of the relationship between excessively strong short rains in coastal East Africa and Indian Ocean SST. Mon Weather Rev 131(1):74–94

    Article  Google Scholar 

  • Bland JM, Altman DG (1995) Multiple significance tests: the Bonferroni method. BMJ 310(6973):170

    Article  Google Scholar 

  • Boulard D, Pohl B, Crétat J, Vigaud N, Pham-Xuan T (2013) Downscaling large-scale climate variability using a regional climate model: the case of ENSO over Southern Africa. Clim Dyn 40(5–6):1141–1168

    Article  Google Scholar 

  • Clark CO, Webster PJ, Cole JE (2003) Interdecadal variability of the relationship between the Indian Ocean zonal mode and East African coastal rainfall anomalies. J Clim 16(3):548–554

    Article  Google Scholar 

  • Da Rocha RP, Reboita MS, Dutra LMM, Llopart MP, Coppola E (2014) Interannual variability associated with ENSO: present and future climate projections of RegCM4 for South America-CORDEX domain. Clim Change. doi:10.1007/s10584-014-1119-y

    Google Scholar 

  • Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137(656):553–597

    Article  Google Scholar 

  • Déqué M, Piedelievre JP (1995) High resolution climate simulation over Europe. Clim Dyn 11(6):321–339

    Article  Google Scholar 

  • Diro GT, Grimes DIF, Black E (2011a) Large scale features affecting Ethiopian rainfall. In: Williams CJR, Kniveton DR (eds) African climate and climate change, Springer, Netherlands pp 13–50

    Chapter  Google Scholar 

  • Diro GT, Grimes DIF, Black E (2011b) Teleconnections between Ethiopian summer rainfall and sea surface temperature: part I—observation and modelling. Clim Dyn 37(1–2):103–119

    Article  Google Scholar 

  • Dosio A, Panitz H-J (2015) Dynamically downscaling of CMPI5 CGMs over CORDEX-Africa with COSMO-CLM: analysis of the climate change signal and differences with the driving GCMs. Clim Dyn. doi:10.1007/s00382-015-2664-4

    Google Scholar 

  • Dosio A, Panitz H-J, Schubert-Frisius M, Luethi D (2015) Dynamical downscaling of CMIP5 global circulation models over CORDEX-Africa with COSMO-CLM: evaluation over the present climate and analysis of the added value. Clim Dyn 44:2637–2661. doi:10.1007/s00382-014-2262-x

    Article  Google Scholar 

  • Endris HS, Omondi P, Jain S, Lennard C, Hewitson B, Chang’a L, Awange JL, Tazalika L (2013) Assessment of the performance of CORDEX regional climate models in simulating East African rainfall. J Clim 26(21):8453–8475

    Article  Google Scholar 

  • Enfield DB, Mestas-Nuñez AM, Mayer DA, Cid-Serrano L (1999) How ubiquitous is the dipole relationship in tropical Atlantic sea surface temperatures? Journal of Geophysical Research: Oceans (1978–2012) 104(C4):7841–7848

    Article  Google Scholar 

  • FEWS NET (2011) Past year one of the driest on record in the eastern Horn. Famine early warning system network report, June 14, 2011, U.S. Agency for International Development, Washington, DC

  • Fox-Rabinovitz M, Côté J, Dugas B, Déqué M, McGregor JL (2006) Variable resolution general circulation models: Stretched-grid model intercomparison project (SGMIP). J Geophys Res 111:D16104. doi:10.1029/2005JD006520

    Article  Google Scholar 

  • Giorgi F, Mearns LO (1991) Approaches to the simulation of regional climate change: a review. Rev Geophys 29(2):191–216

    Article  Google Scholar 

  • Giorgi F, Mearns LO (1999) Introduction to special section: regional climate modeling revisited. J Geophys Res Atmos (1984–2012) 104(6):6335–6352

    Article  Google Scholar 

  • Giorgi F, Christensen J, Hulme M, Von Storch H, Whetton P, Jones R, Mearns L, Semazzi F (2001) Regional climate information-evaluation and projections. In: Houghton JT et al (eds) Climate change 2001: the scientific basis. Contribution of working group to the third assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Giorgi F, Jones C, Asrar GR (2009) Addressing climate information needs at the regional level: the CORDEX framework. World Meteorol Organ (WMO) Bull 58(3):175

    Google Scholar 

  • Gissila T, Black E, Grimes DIF, Slingo JM (2004) Seasonal forecasting of the Ethiopian summer rains. Int J Climatol 24(11):1345–1358

    Article  Google Scholar 

  • Hastenrath S (2007) Circulation mechanisms of climate anomalies in East Africa and the equatorial Indian Ocean. Dyn Atmos Oceans 43(1):25–35

    Article  Google Scholar 

  • Hauke J, Kossowski T (2011) Comparison of values of Pearson’s and Spearman’s correlation coefficients on the same sets of data. Quaest Geogr 30(2):87–93

    Google Scholar 

  • Hewitson B, Crane R (1996) Climate downscaling: techniques and application. Clim Res 7:85–95. doi:10.3354/cr007085

    Article  Google Scholar 

  • Indeje M, Semazzi FH, Ogallo LJ (2000) ENSO signals in East African rainfall seasons. Int J Climatol 20(1):19–46

    Article  Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) (2007) Climate change 2007-the physical science basis: Working group I contribution to the fourth assessment report of the IPCC (S Solomon et al (eds)). Cambridge University Press

  • Intergovernmental Panel on Climate Change (IPCC) (2013) Climate change 2013: the physical science basis. In: Contribution of working group i to the fifth assessment report of the intergovernmental panel on climate change, T F Stocker, D Qin, G-K Plattner, M Tignor, S K Allen, J Boschung, et al (eds) (Cambridge, New York: Cambridge University Press), p 1535

  • Kalognomou EA, Lennard C, Shongwe M, Pinto I, Favre A, Kent M, Büchner M (2013) A diagnostic evaluation of precipitation in CORDEX models over Southern Africa. J Clim 26:9477–9506. doi:10.1175/JCLI-D-12-00703.1

    Article  Google Scholar 

  • Kijazi AL, Reason CJC (2005) Relationships between intraseasonal rainfall variability of coastal Tanzania and ENSO. Theor appl climatol 82(3–4):153–176

    Article  Google Scholar 

  • Kim J, Waliser DE, Mattmann CA, Goodale CE, Hart AF, Zimdars PA, Favre A (2014) Evaluation of the CORDEX-Africa multi-RCM hindcast: systematic model errors. Clim dyna 42(5-6):1189–1202

    Article  Google Scholar 

  • Kosaka Y, Xie SP (2013) Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature 501(7467):403–407

    Article  Google Scholar 

  • Langenbrunner B, Neelin JD (2013) Analyzing enso teleconnections in cmip models as a measure of model fidelity in simulating precipitation. J Clim 26:4431–4446. doi:10.1175/JCLI-D-12-00542.1

    Article  Google Scholar 

  • Latif M, Dommenget D, Dima M, Grötzner A (1999) The role of Indian Ocean sea surface temperature in forcing east African rainfall anomalies during December-January 1997/98. J Clim 12(12):3497–3504

    Article  Google Scholar 

  • Liebmann B, Bladé I, Kiladis GN, Carvalho LMV, Senay GB, Allured D, Funk C (2012) Seasonality of African precipitation from 1996 to 2009. J Clim 25:4304–4322. doi:10.1175/JCLI-D-11-00157.1

    Article  Google Scholar 

  • Mason SJ, Goddard L (2001) Probabilistic precipitation anomalies associated with ENSO. Bull Am Meteorol Soc 82(4):619–638

    Article  Google Scholar 

  • Murtagh F (1985) Multidimensional clustering algorithms. In: Chambers JM, Gordesch J, Klas A, Lebart L, Sint PP (eds)Compstat lectures, Würzburg: Physica-Verlag, Vienna

    Google Scholar 

  • Nicholson SE, Kim J (1997) The relationship of the El Nino-Southern oscillation to African rainfall. Int J Climatol 17(2):117–135

    Article  Google Scholar 

  • Nikulin G, Jones C, Giorgi F, Asrar G, Büchner M, Cerezo-Mota R, Hänsler A, Sushama L (2012) Precipitation climatology in an ensemble of CORDEX-Africa regional climate simulations. J Clim 25(18):6057–6078

    Article  Google Scholar 

  • Ogallo LJ (1988) Relationships between seasonal rainfall in East Africa and the Southern oscillation. J Climatol 8(1):31–43

    Article  Google Scholar 

  • Paeth H, Hall NM, Gaertner MA, Alonso MD, Moumouni S, Polcher J, Ruti PM, Rummukainen M (2011) Progress in regional downscaling of West African precipitation. Atmos Sci Lett 12(1):75–82

    Article  Google Scholar 

  • Panitz HJ, Dosio A, Büchner M, Lüthi D, Keuler K (2014) COSMO-CLM (CCLM) climate simulations over CORDEX-Africa domain: analysis of the ERA-Interim driven simulations at 0.44 and 0.22 resolution. Clim Dyn 42(11–12):3015–3038

    Article  Google Scholar 

  • Reynolds RW, Rayner NA, Smith TM, Stokes DC, Wang WQ (2002) An improved in situ and satellite SST analysis for climate. J Clim 15:1609–1625

    Article  Google Scholar 

  • Ropelewski CF, Halpert MS (1987) Global and regional scale precipitation patterns associated with the El Niño/Southern Oscillation. Mon Weather Rev 115(8):1606–1626

    Article  Google Scholar 

  • Rowell DP (2013) Simulating SST teleconnections to Africa: What is the state of the art?. J Clim 26(15):5397–5418

    Article  Google Scholar 

  • Rudolf B, Becker A, Schneider U, Meyer-Christoffer A, Ziese M (2010) The new “GPCC full data reanalysis version 5” providing high-quality gridded monthly precipitation data for the global land-surface is public available since December 2010. GPCC status report December

  • Rummukainen M (2010) State-of-the-art with regional climate models. Wiley Interdiscip Rev Clim Change 1(1):82–96

    Article  Google Scholar 

  • Saji NH, Goswami BN, Vinayachandran PN, Yamagata T (1999) A dipole mode in the tropical Indian Ocean. Nature 401(6751):360–363

    Google Scholar 

  • Samuelsson P, Jones CG, Willén U, Ullerstig A, Gollvik S, Hansson U, Kjellström E, Nikulin G, Wyser K (2011) The Rossby centre regional climate model RCA3: model description and performance. Tellus A 63:4–23

    Article  Google Scholar 

  • Segele ZT, Lamb PJ (2005) Characterization and variability of Kiremt rainy season over Ethiopia. Meteorol Atmos Phys 89(1–4):153–180

    Article  Google Scholar 

  • Segele ZT, Lamb PJ, Leslie LM (2009a) Large-scale atmospheric circulation and global sea surface temperature associations with Horn of Africa June–September rainfall. Int J Climatol 29(8):1075–1100

    Article  Google Scholar 

  • Segele ZT, Leslie LM, Lamb PJ (2009b) Evaluation and adaptation of a regional climate model for the Horn of Africa: rainfall climatology and interannual variability. Int J Climatol 29(1):47–65

    Article  Google Scholar 

  • Slim H (2012) IASC real-time evaluation of the humanitarian response to the horn of africa drought crisis in Somalia, Ethiopia and Kenya. Available from: http://reliefweb.int/sites/reliefweb.int/files/resources/RTE_HoA_SynthesisReport_FINAL.pdf

  • Sylla MB, Gaye AT, Pal JS, Jenkins GS, Bi XQ (2009) High-resolution simulations of West African climate using regional climate model (RegCM3) with different lateral boundary conditions. Theoret Appl Climatol 98(3–4):293–314

    Article  Google Scholar 

  • Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res 106(D7):7183–7192

    Article  Google Scholar 

  • Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93(4):485–498

    Article  Google Scholar 

  • Tourigny E, Jones CG (2009) An analysis of regional climate model performance over the tropical Americas. Part I: simulating seasonal variability of precipitation associated with ENSO forcing. Tellus A 61(3):323–342

    Article  Google Scholar 

  • Ummenhofer CC, Sen Gupta A, England MH, Reason CJ (2009) Contributions of Indian Ocean sea surface temperatures to enhanced East African rainfall. J Clim 22(4):993–1013

    Article  Google Scholar 

  • United Nations Office for the Coordination of Humanitarian Affairs (UNOCHA) (2011) Eastern Africa drought humanitarian report 4, 15 July, New York, NY

  • Wang Y, Leung LR, McGREGOR JL, Lee DK, Wang WC, Ding Y, Kimura F (2004) Regional climate modeling: progress, challenges, and prospects. J Meteorol Soc Jpn 82:1599–1628

    Article  Google Scholar 

  • Yang SC, Keppenne C, Rienecker M, Kalnay E (2009) Application of coupled bred vectors to seasonal-to-interannual forecasting and ocean data assimilation. J Clim 22(11):2850–2870

    Article  Google Scholar 

Download references

Acknowledgments

This study forms part of the PhD thesis of Mr. Endris, and he gratefully acknowledge the Socioeconomic Concequences of Climate Change in Sub-equatorial Africa (SoCoCA) project in Department of Geoscience at University of Oslo (DoG/UiO) for financial support to do his PhD at University of Cape Town. All authors would like to thank the World Climate Research Program’s Working Group for their role in producing the CORDEX and CMIP5 multi-model datasets, and make it accessible through Earth System Grid Federation (ESGF) web portals. We also would like to acknowledge the two anonymous reviewers for helpful comments and suggestions. The NOAA_OI_SST_V2 data were provided by the NOAA CIRES Climate Diagnostics Center, Boulder, USA, from their Web site at http://www.esrl.noaa.gov/psd/data/gridded/data.noaa.oisst.v2.html.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hussen Seid Endris.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Endris, H.S., Lennard, C., Hewitson, B. et al. Teleconnection responses in multi-GCM driven CORDEX RCMs over Eastern Africa. Clim Dyn 46, 2821–2846 (2016). https://doi.org/10.1007/s00382-015-2734-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-015-2734-7

Keywords

Navigation