Overly persistent circulation in climate models contributes to overestimated frequency and duration of heat waves and cold spells

Abstract

The study examines links of summer heat waves and winter cold spells in Central Europe to atmospheric circulation and specifically its persistence in an ensemble of regional climate models (RCMs). We analyse 13 RCMs driven by the ERA-40 reanalysis and compare them against observations over reference period 1971–2000. Using objective classification of circulation types and an efficiency coefficient with a block resampling test, we identify circulation types significantly conducive to heat waves and cold spells. We show that the RCMs have a stronger tendency to group together days with very high or low temperature and tend to simulate too many heat waves and cold spells, especially those lasting 5 days and more. Circulation types conducive to heat waves in summer are characterized by anticyclonic, southerly and easterly flow, with increasing importance of warm advection during heat waves. Winter cold spells are typically associated with easterly and anticyclonic flow, and the onset of cold spells tends to be linked to northerly and cyclonic flow with cold advection. The RCMs are generally able to reproduce the links between circulation and heat waves or cold spells, including the radiation-to-advection effect for heat waves and the opposite advection-to-radiation effect for cold spells. They capture relatively well also changes of mean temperature anomalies during sequences of given circulation types, namely the tendency towards temperature increase (decrease) during those types conducive to heat waves (cold spells). Since mean lengths of all circulation supertypes are overestimated in the RCMs, we conclude that the overly persistent circulation in climate models contributes to the overestimated frequency of long heat waves and cold spells. As these biases are rather general among the examined RCMs and similar drawbacks are likely to be manifested in climate model simulations for the twenty-first century, the results also suggest that climate change scenarios for spells of days with high or low temperatures should be interpreted with a view to the models’ limitations in simulating the recent climate.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Alexander LV, Zhang X, Peterson TC et al (2006) Global observed changes in daily climate extremes of temperature and precipitation. J Geophys Res 111 Art. No. D05109

  2. Andrade C, Leite SM, Santos JA (2012) Temperature extremes in Europe: overview of their driving atmospheric patterns. Nat Hazards Earth Sys 12(5):1671–1691

    Article  Google Scholar 

  3. Ballester J, Rodó X, Giorgi F (2010) Future changes in Central Europe heat waves expected to mostly follow summer mean warming. Clim Dyn 35:1191–1205. doi:10.1007/s00382-009-0641-5

    Article  Google Scholar 

  4. Barriopedro D, Fischer EM, Luterbacher J, Trigo RM, García-Herrera R (2011) The hot summer of 2010: redrawing the temperature record map of Europe. Science 332:220–224. doi:10.1126/science.1201224

    Article  Google Scholar 

  5. Bednorz E (2011) Synoptic conditions of the occurrence of snow cover in central European lowlands. Int J Climatol 31(8):1108–1118

    Article  Google Scholar 

  6. Beniston M (2004) The 2003 heat wave in Europe: a shape of things to come? An analysis based on Swiss climatological data and model simulations. Geophys Res Lett 31:L02202. doi:10.1029/2003GL018857

    Article  Google Scholar 

  7. Beniston M, Stephenson DB, Christensen OB, Ferro CAT, Frei C, Goyette S, Halsnaes K, Holt T, Jylhä K, Koffi B, Palutikof J, Schöll R, Semmler T, Woth K (2007) Future extreme events in European climate: an exploration of regional climate model projections. Clim Change 81:71–95. doi:10.1007/s10584-006-9226-z

    Article  Google Scholar 

  8. Black E, Blackburn M, Harrison G, Hoskins B, Methven J (2004) Factors contributing to the summer 2003 European heatwave. Weather 59:217–223. doi:10.1256/wea.74.04

    Article  Google Scholar 

  9. Blenkinsop S, Jones PD, Dorling SR, Osborn TJ (2009) Observed and modelled influence of atmospheric circulation on central England temperature extremes. Int J Climatol 29:1642–1660

    Article  Google Scholar 

  10. Böhm U, Kücken M, Ahrens W, Block A, Hauffe D, Keuler K, Rockel B, Will A (2006) CLM—the climate version of LM: brief description and long-term application. COSMO Newsl 6:225–235

    Google Scholar 

  11. Casado MJ, Pastor MA (2012) Use of variability modes to evaluate AR4 climate models over the Euro-Atlantic region. Clim Dyn 38(1–2):225–237

    Article  Google Scholar 

  12. Cassou C, Terray L, Phillips AS (2005) Tropical Atlantic influence on European heat waves. J Clim 18:2805–2811

    Article  Google Scholar 

  13. Cattiaux J, Yiou P, Vautard R (2012) Dynamics of future seasonal temperature trends and extremes in Europe: a multi-model analysis from CMIP3. Clim Dyn 38(9–10):1949–1964

    Article  Google Scholar 

  14. Christensen JH, Christensen OB, Lopez P, van Meijgaard E, Botzet M (1996) The HIRHAM4 regional atmospheric climate model. Danish Meteorological Institute, Copenhagen, Scientific Report 96–4

  15. Ciais P, Reichstein M, Viovy N et al (2005) Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437:529–533

    Article  Google Scholar 

  16. Collins M, Booth BBB, Harris GR, Murphy JM, Sexton DMH, Webb MJ (2006) Towards quantifying uncertainty in transient climate change. Clim Dyn 27:127–147

    Article  Google Scholar 

  17. De Bono A, Giuliani G, Kluser S, Peduzzi P (2004) Impacts of summer 2003 heat wave in Europe. UNEP/DEWA/GRID Eur Environ Alert Bull 2:1–4

    Google Scholar 

  18. Della-Marta PM, Luterbacher J, von Weissenfluh H, Xoplaki E, Brunet M, Wanner H (2007) Summer heat waves over western Europe 1880–2003, their relationship to large-scale forcings and predictability. Clim Dyn 29(2–3):251–275

    Article  Google Scholar 

  19. Demuzere M, Werner M, van Lipzig NPM, Roeckner E (2009) An analysis of present and future ECHAM5 pressure fields using a classification of circulation patterns. Int J Climatol 29:1796–1810

    Article  Google Scholar 

  20. Domonkos P, Kyselý J, Piotrowicz K, Petrovic P, Likso T (2003) Variability of extreme temperature events in south-central Europe during the twentieth century and its relationship with large scale circulation. Int J Climatol 23:987–1010

    Article  Google Scholar 

  21. Efthymiadis D, Goodess CM, Jones PD (2011) Trends in Mediterranean gridded temperature extremes and large-scale circulation influences. Nat Hazards Earth Sys 11(8):2199–2214

    Article  Google Scholar 

  22. Farda A, Déqué M, Somot S, Horányi A, Spiridonov V, Tóth H (2010) Model ALADIN as regional climate model for Central and Eastern Europe. Stud Geophys Geod 54(2):313–332

    Article  Google Scholar 

  23. Fischer EM, Schär C (2010) Consistent geographical patterns of changes in high-impact European heatwaves. Nat Geosci 3:398–403. doi:10.1038/ngeo866

    Article  Google Scholar 

  24. Fischer EM, Seneviratne SI, Lüthi D, Schär C (2007) Contribution of land-atmosphere coupling to recent European summer heat waves. Geophys Res Lett 34:L06707. doi:10.1029/2006GL029068

    Article  Google Scholar 

  25. Francis JA, Vavrus SJ (2012) Evidence linking Arctic amplification to extreme weather in mid-latitudes. Geophys Res Lett 39:L06801. doi:10.1029/2012GL051000

    Article  Google Scholar 

  26. Giorgi F, Bi X, Pal JS (2004) Mean, interannual variability and trends in a regional climate change experiment over Europe. I. Presentday climate (1961–1990). Clim Dyn 22:733–756

    Article  Google Scholar 

  27. Haarsma RJ, Selten F, Vd Hurk B et al (2009) Drier Mediterranean soils due to greenhouse warming bring easterly winds over summertime central Europe. Geophys Res Lett 36:L04705. doi:10.1029/2008GL036617

    Article  Google Scholar 

  28. Hartmann DL, Klein Tank AMG, Rusticucci M et al. (2013) Observations: atmosphere and surface. In: Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge and New York

  29. Haugen JE, Haakenstad H (2006) Validation of HIRHAM version 2 with 50 and 25 km resolution. RegClim General Technical Report No. 9. pp 159–173

  30. Haylock MR, Hofstra N, Klein Tank AMG, Klok EJ, Jones PD, New M (2008) A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. J Geophys Res 113:D20119. doi:10.1029/2008JD010201

    Article  Google Scholar 

  31. Huth R (1997) Continental-scale circulation in the UKHI GCM. J Clim 10:1545–1561

    Article  Google Scholar 

  32. Huth R, Kyselý J, Bochníček J, Hejda P (2008) Solar activity affects the occurrence of synoptic types over Europe. Ann Geophys 26:1999–2004

    Article  Google Scholar 

  33. Jacob D (2001) A note to the simulation of the annual and interannual variability of the water budget over the Baltic Sea drainage basin. Meteorol Atmos Phys 77:61–73

    Article  Google Scholar 

  34. Jaeger EB, Seneviratne SI (2011) Impact of soil moisture-atmosphere coupling on European climate extremes and trends in a regional climate model. Clim Dyn 36(9–10):1919–1939

    Article  Google Scholar 

  35. Jenkinson AF, Collison FP (1977) An initial climatology of gales over thebNorth Sea.Meteorological Office, Bracknell, Synoptic Climatology Branch Memorandum No. 62

  36. Jones PD, Hulme M, Briffa KR (1993) A comparison of Lamb circulation types with an objective classification scheme. Int J Climatol 13:655–663

    Article  Google Scholar 

  37. Kirtman B, Power SB, Adedoyin JA et al (2013) Near-term Climate Change: projections and predictability. In: Climate change 2013: the physical science basis. Contribution of Working Group I to the fifth assessment report of the intergovernmental panel on climate change, Cambridge University Press, Cambridge and New York

  38. Kjellström E, Bärring L, Gollvik S, Hansson U et al (2005) A 140-year simulation of European climate with the new version of the Rossby Centre regional atmospheric climate model (RCA3). SMHI Rep Meteorol Climatol 108, SMHI, Norrköping, Sweden, p 54

  39. Kodra E, Steinhaeuser K, Ganguly AR (2011) Persisting cold extremes under twenty-first-century warming scenarios. Geophys Res Lett 38:1–6. doi:10.1029/2011GL047103

    Article  Google Scholar 

  40. Kyselý J (2002) Temporal fluctuations in heat waves at Prague–Klementinum, the Czech Republic, from 1901 to 1997, and their relationships to atmospheric circulation. Int J Climatol 22:33–50

    Article  Google Scholar 

  41. Kyselý J (2007) Implications of enhanced persistence of atmospheric circulation for the occurrence and severity of temperature extremes. Int J Climatol 27:689–695

    Article  Google Scholar 

  42. Kyselý J (2008) Influence of the persistence of circulation patterns on warm and cold temperature anomalies in Europe: analysis over the twentieth century. Glob Planet Change 62:147–163. doi:10.1016/j.gloplacha.2008.01.003

    Article  Google Scholar 

  43. Kyselý J (2010) Recent severe heat waves in central Europe: how to view them in a long-term prospect? Int J Climatol 109:89–109. doi:10.1002/joc1874

    Google Scholar 

  44. Kyselý J, Huth R (2006) Changes in atmospheric circulation over Europe detected by objective and subjective methods. Theor Appl Climatol 85:19–36

    Article  Google Scholar 

  45. Kyselý J, Plavcová E, Davídkovová H, Kynčl J (2011) Comparison of hot and cold spell effects on cardiovascular mortality in individual population groups in the Czech Republic. Clim Res 49:113–129. doi:10.3354/cr01014

    Article  Google Scholar 

  46. Lockwood M, Harrison RG, Woollings T, Solanki SK (2010) Are cold winters in Europe associated with low solar activity? Environ Res Lett 5:024001. doi:10.1088/1748-9326/5/2/024001

    Article  Google Scholar 

  47. Luterbacher J, Dietrich D, Xoplaki E, Grosjean M, Wanner H (2004) European seasonal and annual temperature variability, trends, and extremes since 1500. Science 303:1499–1503

    Article  Google Scholar 

  48. Meehl GA, Tebaldi C (2004) More intense, more frequent, and longer lasting heat waves in the twenty-first century. Science 305:994–997. doi:10.1126/science.1098704

    Article  Google Scholar 

  49. Miralles DG, Teuling AJ, Van Heerwaarden CC, De Arellano JV-G (2014) Mega-heatwave temperatures due to combined soil desiccation and atmospheric heat accumulation. Nat Geosci 7(5):345–349

    Article  Google Scholar 

  50. Moberg A, Jones PD, Lister D et al (2006) Indices for daily temperature and precipitation extremes in Europe analyzed for the period 1901–2000. J Geophys Res 111:D22106. doi:10.1029/2006JD007103

    Article  Google Scholar 

  51. Peings Y, Cattiaux J, Douville H (2013) Evaluation and response of winter cold spells over Western Europe in CMIP5 models. Clim Dyn 41:3025–3037

    Article  Google Scholar 

  52. Plavcová E, Kyselý J (2012) Atmospheric circulation in regional climate models over Central Europe: links to surface air temperature and the influence of driving data. Clim Dyn 39:1681–1695

    Article  Google Scholar 

  53. Plavcová E, Kyselý J, Štěpánek P (2014) Links between circulation types and precipitation in Central Europe in the observed data and regional climate model simulations. Int J Climatol 34:2885–2898

    Google Scholar 

  54. Plummer D, Caya D, Côté H, Frigon A, Biner S, Giguère M, Paquin D, Harvey R, de Elia R (2006) Climate and climate change over North America as simulated by the Canadian regional climate model. J Climate 19:3112–3132

    Article  Google Scholar 

  55. Radu R, Déqué M, Somot S (2008) Spectral nudging in a spectral regional climate model. Tellus 60A:898–910

    Article  Google Scholar 

  56. Robine J-M, Cheung SLK, Le Roy S, Van Oyen H, Griffith C, Michel J-P, Herrmann FR (2008) Death toll exceeded 70,000 in Europe during the summer of 2003. C R Biol 331:171–178. doi:10.1016/j.crvi.2007.12.001

    Article  Google Scholar 

  57. Rohrer M (2012) Climate change and circulation types in the Alpine Region. Scientific Report MeteoSwiss No. 91

  58. Samuelsson P, Jones CG, Willen U, Ullerstig A, Gollvik S, Hansson U, Jansson C, Kjellström E, Nikulin G, Wyser K (2011) The Rossby Centre Regional climate model RCA3: mode description and performance. Tellus 63A:4–23

    Article  Google Scholar 

  59. Schneidereit A, Schubert S, Vargin P et al (2012) Large-scale flow and the long-lasting blocking high over Russia: summer 2010. Mon Weather Rev 140:2967–2981. doi:10.1175/MWR-D-11-00249.1

    Article  Google Scholar 

  60. Sillmann J, Croci-Maspoli M, Kallache M, Katz RW (2011) Extreme cold winter temperatures in Europe under the influence of North Atlantic atmospheric blocking. J Clim 24:5899–5913. doi:10.1175/2011JCLI4075.1

    Article  Google Scholar 

  61. Stegehuis AI, Vautard R, Ciais P et al (2013) Summer temperatures in Europe and land heat fluxes in observation-based data and regional climate model simulations. Clim Dyn 41:455–477. doi:10.1007/s00382-012-1559-x

    Article  Google Scholar 

  62. Tang Q, Zhang X, Yang X, Francis JA (2013) Cold winter extremes in northern continents linked to Arctic sea ice loss. Environ Res Lett 8:014036. doi:10.1088/1748-9326/8/1/014036

    Article  Google Scholar 

  63. Uppala SM, Kallberg PW, Simmons AJ, Andrae U et al (2005) The ERA-40 re-analysis. Q J R Meteorol Soc 131:2961–3012

    Article  Google Scholar 

  64. van der Linden P, Mitchell JFB (eds) (2009) ENSEMBLES: climate change and its impacts: summary of research and results from the ENSEMBLES project. Met Office Hadley Centre, FitzRoy Road, Exeter EX1 3PB, UK

  65. van Meijgaard E, van Ulft LH, van de Berg WJ, Bosveld FC, van den Hurk BJJM, Lenderink G, Siebesma AP (2008) The KNMI regional atmospheric climate model RACMO, version 2.1. KNMI Tech Rep 302. KNMI, De Bilt

  66. Vautard R, Gobiet A, Jacob D et al (2013) The simulation of European heat waves from an ensemble of regional climate models within the EURO-CORDEX project. Clim Dyn 41:2555–2575. doi:10.1007/s00382-013-1714-z

    Article  Google Scholar 

  67. Vavrus S, Walsh JE, Chapman WL, Portis D (2006) The behavior of extreme cold air outbreaks under greenhouse warming. Int J Climatol 26:1133–1147

    Article  Google Scholar 

Download references

Acknowledgments

The RCM data were obtained from the ENSEMBLES project database funded within the EU-FP6, contract number 505539. The study was supported by the Czech Science Foundation under project P209/10/2265 and by the Ministry of Education under project 7AMB15AR001. We thank Ondřej Lhotka, Institute of Atmospheric Physics, Prague, for his valuable comments on the draft of the paper, and anonymous referees for suggestions that helped improve the original manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Eva Plavcová.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Plavcová, E., Kyselý, J. Overly persistent circulation in climate models contributes to overestimated frequency and duration of heat waves and cold spells. Clim Dyn 46, 2805–2820 (2016). https://doi.org/10.1007/s00382-015-2733-8

Download citation

Keywords

  • Heat wave
  • Cold spell
  • Atmospheric circulation
  • Persistence
  • Regional climate models
  • Central Europe