Abstract
This paper documents the capability of the ARW/WRF regional climate model to regionalize near-surface atmospheric variables at high resolution (8 km) over Burgundy (northeastern France) from daily to interannual timescales. To that purpose, a 20-year continuous simulation (1989–2008) was carried out. The WRF model driven by ERA-Interim reanalyses was compared to in situ observations and a mesoscale atmospheric analyses system (SAFRAN) for five near-surface variables: precipitation, air temperature, wind speed, relative humidity and solar radiation, the last four variables being used for the calculation of potential evapotranspiration (ET0). Results show a significant improvement upon ERA-Interim. This is due to a good skill of the model to reproduce the spatial distribution for all weather variables, in spite of a slight over-estimation of precipitation amounts mostly during the summer convective season, and wind speed during winter. As compared to the Météo-France observations, WRF also improves upon SAFRAN analyses, which partly fail at showing realistic spatial distributions for wind speed, relative humidity and solar radiation—the latter being strongly underestimated. The SAFRAN ET0 is thus highly under-estimated too. WRF ET0 is in better agreement with observations. In order to evaluate WRF’s capability to simulate a reliable ET0, the water balance of thirty Douglas-fir stands was computed using a process-based model. Three soil water deficit indexes corresponding to the sum of the daily deviations between the relative extractible water and a critical value of 40 % below which the low soil water content affects tree growth, were calculated using the nearest weather station, SAFRAN analyses weather data, or by merging observation and WRF weather variables. Correlations between Douglas-fir growth and the three estimated soil water deficit indexes show similar results. These results showed through the ET0 estimation and the relation between mean annual SWDI and Douglas-fir growth index that the main difficulties of the WRF model to simulate soil water deficit is mainly attributable to its precipitation biases. In contrast, the low discrepancies between WRF and observations for air temperature, wind speed, relative humidity and solar radiation make then usable for the water balance and ET0 computation.















References
Alapaty K, Herwehe JA, Otte TL, Nolte CG, Bullock OR, Mallard MS, Kain JS, Dudhia J (2012) Introducing subgrid-scale cloud feedbacks to radiation for regional meteorological and climate modeling. Geophys Res Lett 39:L24809. doi:10.1029/2012GL054031
Allen RG, Jensen ME, Wright JL, Burman RD (1989) Operational estimates of reference evaporation. Agron J 81:650–662
Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapo-transpiration guidelines for computing crop requirements. FAO: Rome. Irrigation and Drainage Paper No. 56
Bell VA, Gedney N, Kay AL, Smith RNB, Jones RG, Moore RJ (2011) Estimating potential evaporation from vegetated surfaces for water management impact assessments using climate model output. J Hydrometeorol 12:1127–1136
Berrisford P, Dee DP, Fielding K, Fuentes M, Kållberg P, Kobayashi S, Uppala SM (2009) The ERA-interim archive. ERA Report Series, No. 1 ECMWF: Reading
Betsch P, Bonal D, Breda N, Montpied P, Peiffer M, Tuzet A, Granier A (2010) Drought effects on water relations in beech: the contribution of exchangeable water reservoirs. Agric Meteorol 151(5):531
Boé J, Terray L, Habets F, Martin E (2007) Statistical and dynamical downscaling of the Seine basin climate for hydro-meteorological studies. Int J Climatol 27:1643–1655
Bois B (2007) Cartographie agroclimatique à méso-échelle : méthodologie et application à la variabilité spatiale du climat en Gironde viticole. Conséquences pour le développement de la vigne et la maturation du raisin. Ph.D. Thesis, Bordeaux, Université de Bordeaux 2, p 211
Boulard D, Pohl B, Crétat J, Vigaud N (2013) Downscaling large-scale climate variability using a regional climate model: the case of ENSO over Southern Africa. Clim Dyn 40:1141–1168. doi:10.1007/s00382-012-1400-6
Bréda N, Huc R, Granier A, Dreyer E (2006) Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences. Ann For Sci 63:625–644
Castel T, Xu Y, Richard Y, Pohl B, Crétat J, Thévenin D, Cuccia C, Bois B, Roucou P, (2010) Assessment of Dynamic downscaling of the continental East French regional climate at high-resolution using the ARW/WRF model, AIC, pp 107–112
Chen F, Dudhia J (2001) Coupling an advanced land-surface/hydrology model with the Penn State/NCAR MM5 modeling- system. Part I: model description and implementation. Mon Weather Rev 129:569–585
Christensen JH, Christensen OB (2007) A summary of the PRUDENCE model projections of changes in European climate by the end of this century. Clim Change 81(Suppl. 1):7–30
Copeland JH, Pilke RA, Kittel TGF (1996) Potential climate impacts of vegetation change: a regional modeling study. J Geophys Res 101:7409–7418
Correia FWS, Alvalá RCS, Manzi AO (2007) Modeling the impacts of land cover change in Amazonia: a regional climate model (RCM) simulation study. Theor Appl Climatol 93:225–244
Crétat J, Pohl B, Richard Y, Drobinski P (2012) Uncertainties in simulating regional climate of Southern Africa: sensitivity to physical parameterizations using WRF. Clim Dyn 38:613–634. doi:10.1007/s00382-011-1055-8
Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Holm EV, Isaksen L, Kallberg P, Kohler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette J-J, Park B-K, Peubey C, de Rosnay P, Tavolato C, Thepaut J-N, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597. doi:10.1002/qj.828
Droogers P, Allen RG (2002) Estimating reference evapo-transpiration under inaccurate data conditions. Irrig Drain Syst 16:33–45
Dudhia J (1989) Numerical study of convection observed during the winter experiment using a mesoscale two-dimensional model. J Atmos Sci 46:3077–3107
Durand Y (1995) Analyse des principaux paramètres météorologiques de surface sur les massifs alpins et d’autres zones climatiquement homogènes. Technical report, Météo-France. Note scientifique et technique SAFRAN, CEN, Grenoble
Durand Y, Brun E, Mérindol L, Guyomarc’h G, Lesaffre B, Martin E (1993) A meteorological estimation of relevant parameters for snow models. Ann Glaciol 18:65–71
Durand Y, Laternser M, Giraud G, Etchevers P, Lesaffre B, Mérindol L (2009) Reanalyses of 44 years of climate in the French Alps (1958–2002): methodology, model validation, climatology and trends for air temperature and precipitation. J Appl Meteorol Climatol 48:429–449. doi:10.1175/2008JAMC1808.1
Frey-Buness F, Heimann D, Sausen R (1995) A statistical-dynamical downscaling procedure for global climate simulations. Theor Appl Climatol 50(3–4):117–131
Friedl MA, McIver DK, Hodges JCF, Zhang XY, Muchoney D, Strahler AH, Woodcock CE, Gopal S, Schneider A, Cooper A, Baccini A, Gao F, Schaaf C (2002) Global land cover mapping from MODIS: algorithms and early results. Remote Sens Environ 83:287–302
Gandois L, Nicolas M, van der Heijden G, Probst A (2010) The importance of biomass net uptake for a trace metal budget in a forest stand in north-eastern France. Sci Total Environ 408(23):5870–5877
Gautier C, Diak G, Masse S (1980) A simple physical model to estimate incident solar radiation at the surface from GOES satellite data. J Appl Meteorol 19:1005–1012
Gavilan P, Lorite IJ, Tornero S, Berengena J (2006) Regional calibration of Hargreaves equation for estimating reference ET in a semiarid environment. Agric Water Manag 81:257–281
Giorgi F, Mearns LO (1991) Approaches to the simulation of regional climate change: a review. Rev Geophys 29(2):191–216. doi:10.1029/90RG02636
Granier A, Bréda N, Biron P, Villette S (1999) A lumped water balance model to evaluate duration and intensity of drought constraints in forest stands. Ecol Model 116:269–283
Gudmundsson L, Bremnes JB, Haugen JE, Engen Skaugen T (2012) Technical note: downscaling RCM precipitation to the station scale using quantile mapping—a comparison of methods. Hydrol Earth Syst Discuss 9:6185–6201. doi:10.5194/hessd-9-6185-2012
Heck P, Lüthi D, Wernli H, Schär C (2001) Climate impacts of European-scale anthropogenic vegetation changes: a sensitivity study using a regional climate model. J Geophys Res 106(D8):7817–7835. doi:10.1029/2000JD900673
Hong SY, Noh Y, Dudhia J (2006) A new vertical diffusion package with an explicit treatment of entrainment processes. Mon Weather Rev 134:2318–2341
Hutchinson MF (1995) Interpolating mean rainfall using thin plate smoothing splines. Int J Geogr Inf Syst 9:385–403
IPCC (2007) Climate change: synthesis report. In: Pachauri RK, Reisinger A (eds) Contribution of working Groups I, II and III to the fourth assessment report of the intergovernmental panel on climate change. Core Writing Team, IPCC, Geneva, Switzerland
Ishak AM, Bray M, Remesan R, Han D (2010) Estimating reference evapo-transpiration using numerical weather modelling. Hydrol Process 24:3490–3509
Jones C, Giorgi F, Asrar G (2011) The coordinated regional downscaling experiment: CORDEX, an international downscaling link to CMIP5. CLIVAR Exchanges, No. 56, International CLIVAR Project Office, Southampton, UK, pp 34–40
Kain JS (2004) The Kain–Fritsch convective parameterization: an update. J Appl Meteorol 43:170–181
Landman WA, Kgatuke MM, Mbedzi M, Beraki A, Bartman A, du Piesanie A (2009) Performance comparison of some dynamical and empirical downscaling methods for South Africa from a seasonal climate modelling perspective. Int J Climatol 29:1535–1549. doi:10.1002/joc.1766
Laprise R (2008) Regional climate modelling. J Comput Phys 227:3641–3666
Maraun D (2013) Bias correction, quantile mapping, and downscaling: revisiting the inflation issue. J Clim 26:2137–2143. doi:10.1175/JCLI-D-12-00821.1
Maraun D, Wetterhall F, Ireson AM, Chandler RE, Kendon EJ, Widmann M, Brienen S, Rust HW, Sauter T, Themeßl M, Venema VKC, Chun KP, Goodess CM, Jones RG, Onof C, Vrac M, Thiele-Eich I (2010) Precipitation downscaling under climate change: recent developments to bridge the gap between dynamical models and the end user. Rev Geophys 48:RG3003. doi:10.1029/2009RG000314
Marteau R, Richard Y, Pohl B, Chateau Smith C, Castel T (2014) High-resolution rainfall variability simulated by the WRF RCM: application to eastern France. Clim Dyn 44:1093–1107
McAfee SA (2013) Methodological differences in projected potential evapo-transpiration. Clim Change. doi:10.1007/s10584-013-0864-7
Michelot A, Bréda N, Damesin C, Dufrêne E (2012) Differing growth responses to climatic variations and soil water deficits of Fagus sylvatica, Quercus petraea and Pinus sylvestris in a temperate forest. For Ecol Manag 265:161–171
Mlawer E, Taubman S, Brown P, Iacono M, Clough S (1997) Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the long-wave. J Geophys Res 102:16663–16682
Monteith JL (1981) Evaporation and surface temperature. Q J R Meteorol Soc 107:1–27
Mooney PA, Mulligan FJ, Fealy R (2010) Comparison of ERA-40, ERA-Interim and NCEP/NCAR reanalyses data with observed surface air temperature over Ireland. Int J Climatol 31:487–632. doi:10.1002/joc.2098
Morrison H, Thompson G, Tatarskii V (2009) Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: comparison of one- and two- moment schemes. Mon Weather Rev 137:991–1007
Penman HL (1948) Natural evaporation from open water, bare soil and grass. Proc R Soc Lond 193:120–145
Pereira AR (2004) The Priestley–Taylor parameter and the decoupling factor for estimating reference evapo-transpiration. Agric For Meteorol 125:305–313. doi:10.1016/j.agrformet.2004.04.002
Piedallu C, Lebourgeois F, Gégout JC, Seynave I, Vepierre R, Cluzeau C, Nédeltcheva T, Bruno E, Badeau V (2007) Développement, spatialisation, et validation d’indices bioclimatiques. ENGREF-IFN-INRA, p 85
Prudhomme C, Williamson J (2013) Derivation of RCM-driven potential evapo-transpiration for hydrological climate change impact analysis in Great Britain: a comparison of methods and associated uncertainty in future projections. Hydrol Earth Syst Sci 17:1365–1377
Quintana-Seguí P, Le Moigne P, Durand Y, Martin E, Habets F, Baillon M, Canellas C, Franchistéguy L, Morel S (2008) Analysis of near surface atmospheric variables: validation of the SAFRAN analyses over France. J Appl Meteorol Climatol 47:92–107. doi:10.1175/2007JAMC1636.1
Remesan R, Shamim MA, Han D (2008) Model data selection using Gamma test for daily solar radiation estimation. Hydrol Process 22:4301–4309
Rummukainen M (2010) State-of-the-art with regional climate models. WIREs Clim Change 1:82–96. doi:10.1002/wcc.008
Sergent A-S, Rozenberg P, Bréda N (2012) Douglas-Fir is vulnerable to exceptional and recurrent drought episodes and recovers less well on less fertile sites. Ann For Sci 2012:1–12. doi:10.1007/s13595-012-0220-5
Shih SF, Allen LH, Hammond LC, Jones JW, Rogers JS, Smajstrla AG Jr (1983) Basinwide water requirement estimation in southern Florida. Trans ASAE 26(3):760–766
Skamarock WC, Klemp JB, Dudhia J, Gill DO, Barker DM, Duda M, Huang XY, Wang W, Powers JG (2008) A description of the advanced research WRF version 3. NCAR technical note, NCAR/TN\u2013475?STR, p 123
Szczypta C, Calvet JC, Albergel C, Balsamo G, Boussetta S, Carrer D, Lafont S, Meurey C (2011) Verification of the new ECMWF ERA-Interim reanalyses over France. Hydrol Earth Syst Sci 15:647–666
Themeßl M, Gobiet A, Leuprecht A (2011) Empirical-statistical downscaling and error correction of daily precipitation from regional climate models. Int J Climatol 31:1531–1544. doi:10.1002/joc.2168
Van der Heijden G, Legout A, Nicolas M, Ulrich E, Johnson DW, Dambrine E (2011) Long-term sustainability of forest ecosystems on sandstone in the Vosges Mountains (France) facing atmospheric deposition and silvicultural change. For Ecol Manag 261:730–740
Van der Heijden G, Legout A, Pollier B, Bréchet C, Ranger J, Dambrine E (2013) Tracing and modeling preferential flow in a forest soil—potential impact on nutrient leaching. Geoderma 195–196:12–22
Van der Linden P, Mitchell JFB (2009) ENSEMBLES: climate change and its impacts: summary of research and results from the ENSEMBLES project. Met Office Hadley Centre, Exeter
Vautard R, Noël T, Li L, Vrac M, Martin E, Dandin P, Cattiaux J, Joussaume S (2013) Climate variability and trends in downscaled high-resolution simulations and projections over Metropolitan France. Clim Dyn 41(5–6):1419–1437
Vidal JP, Martin E, Franchistéguy L, Baillon M, Soubeyroux JM (2010) A 50-year high-resolution atmospheric reanalyses over France with the Safran system. Int J Climatol 30:1627–1644
Xu CY, Singh VP (2001) Evaluation and generalization of temperature-based methods for calculating evaporation. Hydrol Process 15:305–319
Xu Y, Castel T, Richard Y, Cuccia C, Bois B (2012) Burgundy regional climate change and its potential impact on grapevines. Clim Dyn 39:1613–1626
Zorita E, von Storch H (1999) The analog method as a simple statistical downscaling technique: comparison with more complicated methods. J Clim 12:2474–2489
Acknowledgments
The authors thank A. Witterongel, A. Auffray and D. Thevenin, who provided observation data. WRF was provided by the University Corporation for Atmospheric Research website (for more information see http://www.mmm.ucar.edu/wrf/users/download/get_source.html). Biljou© is a web application freely provided by the Forest Ecology and Ecophysiology Unit from INRA (https://appgeodb.nancy.inra.fr/biljou/). Observation records, SATMOS and SAFRAN data were provided by Météo-France. ERA-Interim data were provided by the ECMWF. Calculations were performed using HPC resources from DSI-CCUB, université de Bourgogne Franche Comté.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Boulard, D., Castel, T., Camberlin, P. et al. Capability of a regional climate model to simulate climate variables requested for water balance computation: a case study over northeastern France. Clim Dyn 46, 2689–2716 (2016). https://doi.org/10.1007/s00382-015-2724-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00382-015-2724-9