Climate Dynamics

, Volume 46, Issue 7–8, pp 2611–2631 | Cite as

What drives LGM precipitation over the western Mediterranean? A study focused on the Iberian Peninsula and northern Morocco

  • P. Beghin
  • S. Charbit
  • M. Kageyama
  • N. Combourieu-Nebout
  • C. Hatté
  • C. Dumas
  • J.-Y. Peterschmitt


The evolution of precipitation is a key question concerning future climatic changes, especially in regions like the Mediterranean area which are currently prone to droughts. The influence of atmospheric circulation changes (in the mid-latitude westerlies or in the strength of the subtropical subsidence), along with changes in local mechanisms generating precipitation (such as convection) make it difficult to predict precipitation changes confidently over this area. Understanding its governing mechanisms is crucial. A possible approach is to test our understanding on different documented past climatic contexts. This paper focuses on the Last Glacial Maximum period (LGM) over the western Mediterranean region and puts in perspective the available information inferred from paleo-climatic records and the outputs of nine global climate models. We first review the available information on LGM precipitation in this region and find that the environmental conditions prevailing at this period range from humid to semi-arid, depending on the proxies. Model outputs from the PMIP3–CMIP5 database also yield a wide range of mean annual responses in this area, from wetter to drier conditions with respect to the pre-industrial period. This variety of responses allows to investigate the mechanisms governing LGM precipitation in the western Mediterranean area. Over the Iberian Peninsula and northern Morocco, most models simulate a larger amount of LGM precipitation in winter w.r.t. the pre-industrial period. This feature is mainly due to the large-scale effect of the southward shift of the North Atlantic jet stream, which is closely associated with the surface air temperature changes over the northwestern North Atlantic. In summer, precipitation changes mainly result from convection and are correlated to local surface air temperature anomalies, highlighting the key role of local processes. These contrasted changes in winter and summer, linked to different mechanisms, could explain the range of various signals derived from paleo-climatic archives, especially if the climatic indicators are sensitive to seasonal precipitation.


Jet stream LGM Iberian Peninsula Precipitation PMIP3 



We acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling, which is responsible for CMIP, and the Paleoclimate Modelling Intercomparison Project (PMIP) and we thank the climate modeling groups (listed in Table 1 of this paper) for producing and making available their model output. For CMIP the US Department of Energy’s Program for Climate Model Diagnosis and Intercomparison provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals. To analyze the CMIP5 data, this study benefited from the IPSL Prodiguer-Ciclad facility which is supported by CNRS, UPMC, Labex L-IPSL which is funded by the ANR (Grant ANR-10-LABX-0018) and by the European FP7 IS-ENES2 project (Grant 312979). Pauline Beghin received a grant from CEA and this work is supported by the Université Versailles Saint Quentin. The authors would like to thank Pradeebane Vaittinada for the explanation of the bootstrapping method and Dominique Genty for fruitful discussions about speleothems records. This work also benefited from productive exchanges with Catherine Ritz and Daniel Lunt. The authors are also very grateful to three anonymous reviewers for their constructive comments and suggestions that help to improve the writing of the manuscript.


  1. Abe-Ouchi A, Saito F, Kageyama M, Braconnot P, Harrison SP, Lambeck K, Otto-Bliesner BL, Peltier WR, Tarasov L, Peterschmitt J-Y, Takahashi K (2015) Ice-sheet configuration in the CMIP5/PMIP3 Last Glacial Maximum experiments. Geosci Model Dev Discuss 8:4293–4336. doi: 10.5194/gmdd-8-4293-2015 CrossRefGoogle Scholar
  2. Andrieu V, Eicher U, Reille M (1993) La fin du dernier Pléniglaciaire dans les Pyrénées (France): données polliniques isotopiques et radiométriques (The end of the last Peniglacial in the Pyrenees (France): pollenanalytical isotopic and radiometric data). Comptes Rendus de l’Académie des Sciences 316(2):245–250Google Scholar
  3. Athanasiadis PJ, Wallace JM, Wettstein JJ (2010) Patterns of wintertime jet stream variability and their relation to the stor tracks. J Atmos Sci 67:1361–1381. doi: 10.1175/2009JAS3270.1 CrossRefGoogle Scholar
  4. Barnes EA, Polvani L (2013) Response of the midlatitude jets, and of their variability to increased greenhouse gases in the CMIP5 models. J Clim 26(18):7117–7135CrossRefGoogle Scholar
  5. Barnett TP, Preisendorfer R (1987) Origins and levels of monthly and seasonal forecast skill for United States surface air temperatures determined by canonical correlation analysis. Mon Weather Rev 115:1825–1850CrossRefGoogle Scholar
  6. Bartlein PJ, Harrison S, Brewer S, Connor S, Davis BAS, Gajewski K, Guiot J, Harrison-Prentice TI, Henderson A, Peyron O, Prentice IC, Scholze M, Seppä H, Shuman B, Sugita S, Thompseon RS, Viau AE, Williams J, Wu H (2011) Pollen-based continental climate reconstructions at 6 and 21 ka: a global synthesis. Clim Dyn 37:775–802. doi: 10.1007/s00382-010-0904-1 CrossRefGoogle Scholar
  7. Beghin P, Charbit S, Dumas C, Kageyama M, Roche DM, Ritz C (2014) Interdependence of the growth of the Northern Hemisphere ice sheets during the last glaciation: the role of atmospheric circulation. Clim Past 10:345–358CrossRefGoogle Scholar
  8. Berger AL (1978) Long-term variations of caloric insolation resulting from the Earth's orbital elements. Quat Res 9:139–167CrossRefGoogle Scholar
  9. Braconnot P, Otto-Bliesner B, Harrison S, Joussaume S, Peterchmitt J-Y, Abe-Ouchi A, Crucifix M, Driesschaert E, Fichefet T, Hewitt CD, Kageyama M, Kitoh A, Laîné A, Loutre M-F, Marti O, Merkel U, Ramstein G, Valdes P, Weber SL, Yu Y, Zhao Y (2007) Results of PMIP2 coupled simulations of the Mid-Holocene and Last Glacial Maximum. Part 1: experiments and large-scale features. Clim Past 3:261–277. doi: 10.5194/cp-3-261-2007 CrossRefGoogle Scholar
  10. Braconnot P, Harrisson SP, Kageyama M, Bartlein PJ, Masson-Delmotte V, Abe-Ouchi A, Otto-Bliesner B, Zhao Y (2012) Evaluation of climate models using paleoclimatic data. Nat Clim Change 2(6):417–424CrossRefGoogle Scholar
  11. Broccoli AJ, Manabe S (1987) The influence of continental ice, atmospheric CO2, and land albedo on the climate of the Last Glacial Maximum. Clim Dyn 1:87–99CrossRefGoogle Scholar
  12. Chavaillaz Y, Codron F, Kageyama M (2013) Southern westerlies in LGM and future (RCP4.5) climates. Clim Past 9:517–524. doi: 10.5194/cp-9-517-2013 CrossRefGoogle Scholar
  13. Cheddadi R, Fady B, François L, Hajar L, Suc J-P, Huang K, Demarteau M, Vendramin GG, Ortu E (2009) Putative glacial refugia of Cedrus atlantica deduced from Quaternary pollen records and modern genetic diversity. J Biogeogr 36(7):1361–1371. doi: 10.1111/j.1365-2699.2008.02063.x CrossRefGoogle Scholar
  14. Clark PU, Clague JJ, Curry BB, Dreimanis A, Hicock SR, Miller GH, Berger GW, Eyles N, Lamothe M, Miller BB, Mott RJ, Oldale RN, Stea RR, Szabo JP, Thorleifson LH, Vincent J-S (1993) Initiation and developement of the Laurentide and Cordilleran ice sheets following the last interglaciation. Quat Sci Rev 12:79–114CrossRefGoogle Scholar
  15. Clark PU, Alley RB, Pollard D (1999) Northern Hemisphere ice-sheet influences on global climate change. Science 286:1104–1111CrossRefGoogle Scholar
  16. Combourieu-Nebout N, Peyron O, Dormoy I, Desprat S, Beaudouin C, Kotthoff U, Marret F (2009) Rapid climatic variability in the west Mediterranean during the last 25 000 years from high resolution pollen data. Clim Past 5:503–521CrossRefGoogle Scholar
  17. Cook KH, Held IM (1988) Stationary waves of the ice age climate. J Clim 1:807–819. doi: 10.1175/1520-0442(1988)001<0807:SWOTIA>2.0.CO;2 CrossRefGoogle Scholar
  18. Cortesi N, Gonzalez-Hidalgo JC, Trigo RM, Ramos AM (2014) Weather types and spatial variability of precipitation in the Iberian Peninsula: weather types and precipitation. Int J Climatol 34:2661–2677. doi: 10.1002/joc.3866 CrossRefGoogle Scholar
  19. Dyke AS, Prest VK (1987) Late Wisconsinan and Holocene retreat of the Laurentide ice sheet. Geological Survey of Canada. Ottawa, Ontario: Map 1702A, scale 1701:500000Google Scholar
  20. Dyke AS, Andrews JT, Clark PU, England JH, Miller GH, Shaw J, Veillette JJ (2002) The Laurentide and Innuitian ice sheets during the last glacial maximum. Quat Sci Rev 21:9–31CrossRefGoogle Scholar
  21. El Amrani M, Macaire J-J, Zarki H, Bréhéret J-G, Fontugne M (2008) Contrasted morphosedimentary activity of the lower Kert River (northeastern Morocco) during the Late Pleistocene and the Holocene. Possible impact of bioclimatic variations and human action. C R Geosci 340:533–542CrossRefGoogle Scholar
  22. Fernandez J, Saenz J (2003) Improved field reconstruction with the analog method: searching the CCA space. Clim Res 24:199–213CrossRefGoogle Scholar
  23. Flato G, Marotzke J, Abiodun B, Braconnot P, Chou SC, Collins W, Cox P, Driouech F, Emori S, Eyring C, Forest C, Glekker P, Guilyardi E, Jakob C, Kattsov V, Reason C and Rummukainen M (2013). Evaluation of climate models climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. TF Stocker, D Qin, G-K Plattner, M Tignor, SK Allen, J Boschung, A Nauels, Y Xia, V Bex and PM Midgley. Cambridge, United Kingdom, and New York, NY, Cambridge University PressGoogle Scholar
  24. Fletcher WJ, Sanchez-Goni MF (2008) Orbital and-sub-orbital scale climate impacts on vegetation of the western Mediterranean basin over the last 48,000 yr. Quat Res 70(3):451–464. doi: 10.1016/j.yqres.2008.07.002 CrossRefGoogle Scholar
  25. Garcia-Ruiz JM, Valero-Garcés BL, Gonzalez-Sampériz P, Lorent P, Marti-Bono C, Begueria S, Edwards L (2001) Stratified scree in the Central Spanish Pyrenees: paleoenvironmental implications. Permafr Periglac Process 12:233–242CrossRefGoogle Scholar
  26. Garcia-Ruiz JM, Valero-Garcés BL, Marti-Bono C, Gonzalez-Sampériz P (2003) Asynchroneity of maximum glacier advances in the central Spanish Pyrenees. J Quat Sci 18:61–72CrossRefGoogle Scholar
  27. Genty D, Blamart D, Ouahdi R, Baker A, Jouzel J, Van-Extern S (2003) Precise dating of Dansgaard–Oeschger climate oscillations in western europe from stalagmite data. Nature 421:833–837CrossRefGoogle Scholar
  28. Genty D, Combourieu-Nebout N, Hatté C, Blamart D, Ghaleb B, Isabello L (2005) Rapid climatic changes of the last 90 kyr recorded on the European continent. C R Géosci 337:970–982CrossRefGoogle Scholar
  29. Giorgi F, Lionello P (2008) Climate change projections for the Mediterranean region. Glob Planet Change 63(2–3):90–104. doi: 10.1016/j.gloplacha.2007.09.005 CrossRefGoogle Scholar
  30. Gonzalez-Sampériz P, Valero-Garcés BL, Moreno A, Jalut G, Garcia-Ruiz JM, Marti-Bono C, Delgado-Huertas A, Navas A, Otto T, Dedoubat JJ (2006) Climate variability in the Spanish Pyrenees during the last 30,000 yr revealed by the El Portalet sequence. Quat Res 66:38–52. doi: 10.1016/j.yqres.2006.02.004 CrossRefGoogle Scholar
  31. Gonzalez-Sampériz P, Valero-Garcés BL, Moreno A, Morellon M, Navas A, Machin J, Delgado-Huertas A (2008) Vegetation changes and hydrological fluctuations in the Central Ebro Basin (NE Spain) since the Late Glacial period: Saline lake records. Palaeogeogr Palaeoclimatol Palaeoecol 259:157–181. doi: 10.1016/j.palaeo.2007.10.005 CrossRefGoogle Scholar
  32. Guiot J, Wu HB, Garreta V, Hatté C, Magny M (2009) A few prospective ideas on climate reconstruction: from a statistical single proxy approach towards a multi-proxy and dynamical approach. Clim Past 5:571–583CrossRefGoogle Scholar
  33. Hall NMJ, Valdes PJ, Dong B (1996) The maintenance of the last great ice sheets: a UGAMP GCM study. J Clim 9:1004–1019CrossRefGoogle Scholar
  34. Houze RA Jr, Hobbs PV, Biswas KR, Davis WM (1976) Mesoscale rainbands in extratropical cyclones. Mon Weather Rev 104:868–878CrossRefGoogle Scholar
  35. Hurrell JW (1995) Decadal trends in the North Atlantic Oscillation: regional temperatures and precipitation. Science 269(5224):676–679. doi: 10.1126/science.269.5224.676 CrossRefGoogle Scholar
  36. Jalut G, Monserrat Marti J, Fontugne M, Delebrias G, Vilaplanas JM, Julia R (1992) Glacial to interglacial vegetation changes in the northern and southern Pyrenees: deglaciation, vegetation cover and chronology. Quat Sci Rev 11:449–480CrossRefGoogle Scholar
  37. Jost A, Lunt D, Kageyama M, Abe-Ouchi A, Peyron O, Valdes P, Ramstein G (2005) High-resolution simulations of the Last Glacial Maximum climate over Europe: a solution to discrepancies with continental palaeoclimatic reconstructions? Clim Dyn. doi: 10.1007/s00382-005-0009-4 Google Scholar
  38. Joussaume S, Taylor K (1995) Status of the paleoclimate modelling intercomparison project (PMIP). In: Gates WL (ed) Proceedings of the first international AMIP conference. World Meteorol Organ, Geneva, pp 425–430Google Scholar
  39. Kageyama M, Valdes P (2000) Impact of the North American ice-sheet orography on the Last Glacial Maximum eddies and snowfall. Geophys Res Lett 27(10):1515–1518CrossRefGoogle Scholar
  40. Kageyama M, D’andrea F, Ramstein G, Valdes PJ, Vautard R (1999) Weather climate in past climate atmopheric general circulation model simulations. Clim Dyn 15:773–793CrossRefGoogle Scholar
  41. Kageyama M, Peyron O, Pinot S, Tarasov P, Guiot J, Joussaume S, Ramstein G (2001) The Last Glacial Maximum climate over Europe and western Siberia: a PMIP comparison between models and data. Clim Dyn 17:23–43CrossRefGoogle Scholar
  42. Laîné A, Kageyama M, Salas-Mélia D, Voldoire A, Rivière G, Ramstein G, Planton S, Tyteca S, Peterschmitt JY (2009) Northern hemisphere storm tracks during the Last Glacial maximum in the PMIP2 ocean-atmosphere coupled models: energetic study, seasonal cycle, precipitation. Clim Dyn 32:593–614. doi: 10.1007/s00382-008-0391-9 CrossRefGoogle Scholar
  43. Lambeck K, Purcell A, Funder S, Kjaer KH, Larsen E, Möller P (2006) Constraints on the Late Saalian to early Middle Weichselian ice sheet of Eurasia from field data and rebound modelling. Boreas 35:539–575. doi: 10.1080/03009480600781875 CrossRefGoogle Scholar
  44. Li C, Battisti DS (2008) Reduced Atlantic storminess during Last Glacial Maximum: evidence from a Coupled Climate Model. J Clim 21:3561–3579CrossRefGoogle Scholar
  45. Lionello P, Malanotte-Rizzoli P, Boscolo R, Alpert P, Artale V, Li L, Luterbacher J, May W, Trigo R, Tsimplis M, Ulbrich U, Xoplaki E (2006) The Mediterranean climate: an overview of the main characteristics and issues. Dev Earth Environ Sci 4:1–26Google Scholar
  46. Loulergue L, Schilt A, Spahni R, Masson-Delmotte V, Blunier T, Lemieux B, Barnola J-M, Raynaud D, Stocker TF, Chappellaz J (2008) Orbital and millennial-scale features of atmospheric CH4 over the past 800,000 years. Nature. doi: 10.1038/nature06950 Google Scholar
  47. Lüthi D, Lefloch M, Bereiter B, Blunier T, Barnola J-M, Siegenthaler U, Raynaud D, Jouzel J, Fischer H, Kawamura K, Stocker TF (2008) High-resolution carbon dioxide concentration record 650,000-800,000 years before present. Nature. doi: 10.1038/nature06949 Google Scholar
  48. Mercier N, Hatté C, Fontugne M, Reyss J-L, Valladas H, Wengler L, Brugal J-P, Ouammou A, Weisrock A (2009) Chronology of Upper Pleistocene sequences at Sidi Messaoud (wadi Noun, southwestern Morocco) based on 14C, optical and U-series datingGoogle Scholar
  49. Minyuk PS, Brigham-Grette J, Melles M, Borkhodoev VY, Glushkova OY (2007) Inorganic geochemistry of El’gygytgyn Lake sediments (northeastern Russia) as an indicator of paleoclimatic change for the last 250 kyr. J Paleolimnol 37:123–133. doi: 10.1007/s10933-006-9027-4 CrossRefGoogle Scholar
  50. Mix A (2001) Environmental processes of the ice age: land, oceans, glaciers (EPILOG). Quat Sci Rev 20:627–657CrossRefGoogle Scholar
  51. Morellon M, Valero-Garcés BL, Vegas-Villarubia T, Gonzalez-Sampériz P, Romero O, Delgado-Huertas A, Mata P, Moreno A, Rico M, Corella JP (2009) Lateglacial and Holocene palaeohydrology in the western Mediterranean region: the Lake Estanya record (NE Spain). Quat Sci Rev 28:2582–2599. doi: 10.1016/j.quascirev.2009.05.014 CrossRefGoogle Scholar
  52. Moreno A, Stoll H, Jimenénez-Sanchez M, Cacho I, Valero-Garcés BL, Ito E, Edwards RL (2010) A speleothem record of glacial (25–11.6 kyr BP) rapid climatic changes from northern Iberian Peninsula. Glob Planet Change 71:218–231. doi: 10.1016/j.gloplacha.2009.10.002 CrossRefGoogle Scholar
  53. Moreno A, González-Sampériz P, Morellón M, Valero-Garcés BL, Fletcher WJ (2012) Northern Iberian abrupt climate change dynamics during the last glacial cycle: a view from lacustrine sediments. Quat Sci Rev 36:139–153. doi: 10.1016/j.quascirev.2010.06.031 CrossRefGoogle Scholar
  54. Naughton F, Sanchez-Goni MF, Turin J-L, Duprat J, Malaizé B, Joli C, Cortijo E, Drago T, Freitas MC (2007) Present-day and past (last 25 000 years) marine pollen signal off Western Iberia. Mar Micopaleontol 62(2):91–114. doi: 10.1016/j.mar.micro.2006.07.006 CrossRefGoogle Scholar
  55. Nieto S, Rodriguez-Puebla C (2006) Comparison of precipitation from observed data and general circulation models over the iberian peninsula. J Clim 19:4254–4275CrossRefGoogle Scholar
  56. Ortiz JE, Torres T, Delgado A, Julià R, Lucini M, Llamas FJ, Reyes E, Soler V, Valle M (2004) The palaeoenvironmental and palaeohydrological evolution of Padul Peat Bog (Granada, Spain) over one million years, from elemental, isotopic, and molecular organic geochemical proxies. Org Geochem 35(11–12):1243–1260CrossRefGoogle Scholar
  57. Ortiz JE, Torres T, Delgado A, Llams JF, Soler V, Valle M, Julia R, Moreno L, Diaz-Bautista A (2010) Palaeoenvironmental changes in the Padul Basin (Granada, Spain) over the last 1 Ma based on the biomarker content. Palaeogeogr Palaeoclimatol Palaeoecol 298:286–299. doi: 10.1016/j.palaeo.2010.10.003 CrossRefGoogle Scholar
  58. Otto-Bliesner BL, Brady EC, Clauzet G, Tomas R, Levis S, Kothavala Z (2006) Last glacial maximum and Holocene climate in CCSM3. J Clim 19(11):2526–2544CrossRefGoogle Scholar
  59. Pausata FSR, Li C, Wettstein JJ, Nisancioglu KH, Battisti DS (2009) Changes in atmospheric variability in a glacial climate and the impacts on proxy data: a model intercomparison. Clim Past 5(3):489–502. doi: 10.5194/cp-5-489-2009 CrossRefGoogle Scholar
  60. Pausata FSR, Li C, Wettstein JJ, Kageyama M, Nisancioglu KH (2011) The key role of topography in altering North Atlantic atmospheric circulation duringthe last glacial period. Clim Past 7:1089–1101. doi: 10.5194/cp-7-1089-2011 CrossRefGoogle Scholar
  61. Peltier WR (2004) Global glacial isostasy and the surface of the ice-age Earth: the ICE-5G (VM2) model and GRACE. Annu Rev Earth Planet Sci 32:111–149CrossRefGoogle Scholar
  62. Pèrez-Obiol R, Julià R (1994) Climatic change on the Iberian Peninsula recorded in a 30,000-Yr pollen record from Lake Banyoles. Quat Res 41:91–98CrossRefGoogle Scholar
  63. Peyron O, Guiot J, Cheddadi R, Tarasov P, Reille M, De Beaulieu J-L, Bottema S, Andrieu V (1998) Climatic reconstruction in Europe for 18,000 yr BP from pollen data. Quat Res 49:183–196CrossRefGoogle Scholar
  64. Pons A, Reille M (1988) The Holocene- and upper Pleistocene pollen record from Padul (Granada, Spain): a new study. Palaeogeogr Palaeoclimatol Palaeoecol 66:243–263CrossRefGoogle Scholar
  65. Prado-Pérez AJ, Delgado-Huertas A, Crespo MT, Martin-Sanchez A, Pérez Del Villar L (2013) Late Pleistocene and Holocene mid-latitude palaeoclimatic and palaeoenvironmental reconstructions: an approach based on the isotopic record from a travertine formation in the Guadix-Baza basin. Geol Mag, Spain. doi: 10.1017/S0016756812000726 Google Scholar
  66. Prentice IC, Guiot J, Harrison SP (1992) Mediterranean vegetation, lake levels and paleoclimate at the last glacial maximum. Nature 360:658–660CrossRefGoogle Scholar
  67. Reille M, Andrieu V (1995) The late Pleistocene and Holocene in the Lourdes Basin, Western Pyrénées, France: new pollen analytical and chronological data. Veget Hist Archaeobot 4:1–21CrossRefGoogle Scholar
  68. Rivière G, Laîné A, Lapeyre G, Salas-Mélia D, Kageyama M (2010) Links between Rossby wave breaking and the North Atlantic Oscillation-Arctic Oscillation in present-day and Last Glacial Maximum simulations. J Clim 23:2987–3008. doi: 10.1175/2010JCLI3372.1 CrossRefGoogle Scholar
  69. Roucoux KH, De Abreu L, Shackleton NJ, Tzedakis PC (2005) The response of NW Iberian vegetation to North Atlantic climate oscillations during the last 65 kyr. Quat Sci Rev 24:1637–1653. doi: 10.1016/j.quascirev.2004.08.022 CrossRefGoogle Scholar
  70. Sanchez-Goni MF, Landais A, Cacho I, Duprat J, Rossignol L (2009) Contrasting intrainterstadial climatic evolution between high and middle North Atlantic latitudes: a close-up of Greenland Interstadials 8 and 12. Geochem Geophys Geosyst. doi: 10.1029/2008GC002369 Google Scholar
  71. Sancho C, Pena JL, Lewis C, Mcdonald E, Rhodes E (2003) Preliminary dating of glacial and fluvial deposits in the Cinca River Valley (NE Spain): chronological evidences for the Glacial Maximum in the Pyrenees Quaternary Climatic Changes and Environmental Crises in the Mediterranean Region. MB Ruiz and et al. Universidad de Alcala -Ministerio de Ciencia y Tecnologia–INQAU pp 169–173Google Scholar
  72. Seager R, Battisti DS, Yin J, Gordon N, Naik N, Clement AC, Cane MA (2002) Is the Gulf Stream responsible for Europe's mild winters. Q J Meteorol Soc 128(586):2563–2586. doi: 10.1256/qj:01.0128 CrossRefGoogle Scholar
  73. Seager R, Liu H, Henderson N, Simpson I, Kelley C, Shaw T, Kushnir Y, Ting M (2014) Causes of increasing aridification of the Mediterranean region in response to rising greenhouse gases. J Clim 27:4655–4676. doi: 10.1175/JCLI-D-13-00446.1 CrossRefGoogle Scholar
  74. Spahni R, Chappellaz J, Stocker TF, Loulergue L, Hausammann G, Kawamura K, Flückiger J, Schwander J, Raynaud D, Masson-Delmotte V, Jouzel J (2005) Atmospheric methane and nitrous oxide of the late Pleistocene from Antarctic ice cores. Science 310:1317–1320CrossRefGoogle Scholar
  75. Svendsen JI, Alexanderson H, Astakhov VI, Demidov I, Dowdeswell J, Funder S, Gataullin V, Henriksen M, Hjort C, Houmark-Nielsen M, Hubberten HW, Ingolfsson O, Jakobsson M, Kjaer KH, Larsen E, Lokrantz H, Lunkka JP, Lysa A, Mangerud J, Matiouchkhov A, Murray A, Möller P, Niessen F, Nikolskaya O, Polyak L, Saarnisto M, Siegert C, Siegert MJ, Spielhagen RF, Stein R (2004) Late quaternary ice sheet history of Northern Eurasia. Quat Sci Rev 23:1229–1271CrossRefGoogle Scholar
  76. Tarasov L, Dyke AS, Neal RM, Peltier WR (2012) A data-calibrated distribution of deglacial chronologies for the North American ice complex from glaciological modeling. Earth Planet Sci Lett 315–316:30–40. doi: 10.1016/j.epsl.2011.09.010 CrossRefGoogle Scholar
  77. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93(4):485–498. doi: 10.1175/BAMS-D-11-00094.1 CrossRefGoogle Scholar
  78. Toscano MA, Peltier WR, Drummond R (2011) ICE-5G and ICE-6G models of postglacial relative sea-level history applied to the Holocene coral reef record of northeastern St Croix, U.S.V.I.: investigating the influence of rotational feedback on GIA processes at tropical latitudes. Quat Sci Rev 30:3032–3042. doi: 10.1016/j.quascirev.2011.07.018 CrossRefGoogle Scholar
  79. Ullman DJ, Legrande AN, Carlson AE, Anslow FS, Licciardi JM (2014) Assessing the impact of Laurentide Ice Sheet topography on glacial climate. Clim Past 10:487–507. doi: 10.5194/cp-10-487-2014 CrossRefGoogle Scholar
  80. Valero-Garcés BL, Zeroual E, Kelts K (1998) Arid phases in the western Mediterranean region during the last glacial cycle reonstructed from lacustrine records. In: Benito G, Baker VR, Gregory KJ (eds) Paleohydrology and Environmental Change, pp 67–80Google Scholar
  81. Valero-Garcés BL, Gonzalez-Sampériz P, Navas A, Machin J, Delgado-Huertas A, Pena-Monné JL, Sancho-Marcén C, Stevenson T, Davis BAS (2004) Paleohydrological fluctuations and steppe vegetation during the last glacial maximum in the central Ebro valley (NE Spain). Quat Int 122:43–55. doi: 10.1016/j.quaint.2004.01.030 CrossRefGoogle Scholar
  82. Vegas J, Ruiz-Zapata B, Ortiz JE, Galán L, Torres T, García-Cortés Á, Gil-García MJ, Pérez-González A, Gallardo-Millán JL (2010) Identification of arid phases during the last 50 cal. ka BP from the Fuentillejo maar-lacustrine record (Campo de Calatrava Volcanic Field, Spain). J Quat Sci 25:1051–1062. doi: 10.1002/jqs.1262 CrossRefGoogle Scholar
  83. von Storch H, Zwiers FW (1999) Canonical correlation analysis, in Statistical Analysis in Climate Research, Chap. 14. Cambridge University Press, UKGoogle Scholar
  84. Watts WA (1986). Stages of Climatic Change from full glacial to Holocene in northwest Spain, southern France and Italy: a Comparison of the Atlantic coast and the Mediterranean basin Current Issues in Climate Research. In: Proceedings EC climatology programme symposium. A Ghazi and R Fantechi. Sophia-Antipolis, 1984, Ridel, Dordrecht, pp 101–112Google Scholar
  85. Wu H, Guiot J, Brewer S, Guo Z (2007) Climatic changes in Eurasia and Africa at the last glacial maximum and mid-Holocene: reconstruction from pollen data using inverse vegetation modelling. Clim Dyn 29:211–229. doi: 10.1007/s00382-007-0231-3 CrossRefGoogle Scholar
  86. Xoplaki E, Gonzalez-Rouco JF, Luterbacher J, Wanner H (2004) Wet season Mediterranean precipitation variability: influence of large-scale dynamics and trends. Clim Dyn 23:63–78. doi: 10.1007/s00382-004-0422-0 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • P. Beghin
    • 1
  • S. Charbit
    • 1
  • M. Kageyama
    • 1
  • N. Combourieu-Nebout
    • 1
    • 2
  • C. Hatté
    • 1
  • C. Dumas
    • 1
  • J.-Y. Peterschmitt
    • 1
  1. 1.Laboratoire des sciences du climat et de l’environnementIPSL, CEA-CNRS-UVSQ, UMR 8212Gif-sur-YvetteFrance
  2. 2.Département de Préhistoire, Muséum national d’histoire naturelle, Institut de Paléontologie HumaineUMR 7194 CNRS “Histoire Naturelle de l’Homme Préhistorique”ParisFrance

Personalised recommendations