Climate Dynamics

, Volume 46, Issue 7–8, pp 2337–2351 | Cite as

Atlantic forcing of Pacific decadal variability

  • Fred Kucharski
  • Farah Ikram
  • Franco Molteni
  • Riccardo Farneti
  • In-Sik Kang
  • Hyun-Ho No
  • Martin P. King
  • Graziano Giuliani
  • Kristian Mogensen


This paper investigates the Atlantic Ocean influence on equatorial Pacific decadal variability. Using an ensemble of simulations, where the ICTPAGCM (“SPEEDY”) is coupled to the NEMO/OPA ocean model in the Indo-Pacific region and forced by observed sea surface temperatures in the Atlantic region, it is shown that the Atlantic Multidecadal Oscillation (AMO) has had a substantial influence on the equatorial Pacific decadal variability. According to AMO phases we have identified three periods with strong Atlantic forcing of equatorial Pacific changes, namely (1) 1931–1950 minus 1910–1929, (2) 1970–1989 minus 1931–1950 and (3) 1994–2013 minus 1970–1989. Both observations and the model show easterly surface wind anomalies in the central Pacific, cooling in the central-eastern Pacific and warming in the western Pacific/Indian Ocean region in events (1) and (3) and the opposite signals in event (2). The physical mechanism for these responses is related to a modification of the Walker circulation because a positive (negative) AMO leads to an overall warmer (cooler) tropical Atlantic. The warmer (cooler) tropical Atlantic modifies the Walker circulation, leading to rising (sinking) and upper-level divergence (convergence) motion in the Atlantic region and sinking (rising) motion and upper-level convergence (divergence) in the central Pacific region.


Climate shift Pacific mean state change Atlantic forcing Climate variability 



The authors thank three anonymous reviewers for their constructive comments that helped improving the quality of the paper.


  1. Balmaseda MA, Vidard A, Anderson D (2008) The ECMWF ocean analysis system: ORA-S3. Month Weather Rev 136(8):3018–3034CrossRefGoogle Scholar
  2. Chikamoto Y, Kimoto M, Watanabe M, Ishii M, Mochizuki T (2012) Relationship between the Pacific and Atlantic stepwise climate change during the 1990s. Geophys Res Lett 39: L21710. doi: 10.1029/2012GL053901 Google Scholar
  3. Chikamoto Y, Timmermann A, Luo J-J, Mochizuki T, Kimoto M, Watanabe M, Ishii M, Xie S-P, Jin F-F (2015) Skilful multi-year predictions of tropical trans-basin climate variability. Nat Commun 6:6869. doi: 10.1038/ncomms7869 CrossRefGoogle Scholar
  4. Compo GP et al (2011) The 20th century reanalysis project. Q J R Meteorol Soc 137:1–28. doi: 10.1002/qj.776 CrossRefGoogle Scholar
  5. Compo GP, Sardeshmukh PD (2010) Removing ENSO-related variations from the climate record. J Clim 23:1957–1978CrossRefGoogle Scholar
  6. Ding H, Keenlyside NS, Latif M (2012) Impact of the Eequatorial Atlantic on the El Nino southern oscillation. Clim Dyn 38:1965–1972. doi: 10.1007/s00382-011-1097-y CrossRefGoogle Scholar
  7. Dong BW, Sutton RT (2007) Enhancement of ENSO variability by a weakened Atlantic thermohaline circulation in a coupled GCM. J Clim 20:4920–4939CrossRefGoogle Scholar
  8. Dong B, Lu R (2013) Interdecadal enhancement of the walker circulation over the tropical pacific in the late 1990s. Adv Atmos Sci 30:247–262CrossRefGoogle Scholar
  9. England MH et al (2014) Recent intensification of wind- driven circulation in the Pacific and the ongoing warming hiatus. Nat Clim Change 4:222–227. doi: 10.1038/nclimate2106 CrossRefGoogle Scholar
  10. Farneti R, Molteni F, Kucharski F (2014a) Pacific interdecadal variability driven by tropical-extratropical interactions. Clim Dyn 42(11–12):3337–3355. doi: 10.1007/s00382-013-1906-6 CrossRefGoogle Scholar
  11. Farneti R, Dwivedi S, Kucharsli F, Molteni F, Griffies SM (2014b) On Pacific subtropical cell variability over the second half of the twentieth century. J Clim 27:7102–7112CrossRefGoogle Scholar
  12. Fichefet T, Fichefet MA, Morales Maqueda MA (1997) Sensitivity of a global sea ice model to the treatment of ice thermodynamics and dynamics. J Geophys Res 102:12609–12646. doi: 10.1029/97JC00480 CrossRefGoogle Scholar
  13. Frauen C, Dommenget D (2012) Influences of the tropical Indian and Atlantic Oceans on the predictability of ENSO. Geophys Res Lett 39:L02706. doi: 10.1029/2011GL050520 CrossRefGoogle Scholar
  14. Guilyardi E, Wittenberg A, Fedorov A, Collins, M, Wang C, Capotondi A, Van Oldenborgh J, Stockdale T (2009) Understanding El Nino in ocean-atmosphere general circulation models: Progress and challenges. Bull Amer Math Soc 90:325–340. doi: 10.1175/2008BAMS2387.1 CrossRefGoogle Scholar
  15. Jansen MF, Dommenget D, Keenlyside N (2009) Tropical atmosphereocean interactions in a conceptual framework. J Clim 22:550–567. doi: 10.1175/2008JCLI2243.1 CrossRefGoogle Scholar
  16. Kang I-S, No H-H, Kucharski F (2014) ENSO amplitude modulation associated with the mean SST changes in the tropical central pacific induced by atlantic multidecadal oscillation. J Clim 27:7911–7920. doi: 10.1175/JCLI-D-14-00018.1 CrossRefGoogle Scholar
  17. Keenlyside NS, Ding H, Latif M (2013) Potential of equatorial Atlantic variability to enhance El Nino prediction. Geophys Res Lett 40:2278–2283. doi: 10.1002/grl.50362 CrossRefGoogle Scholar
  18. Kroeger J, Kucharski F (2011) Sensitivity of ENSO characteristics to a new interactive flux correction scheme in a coupled GCM. Clim Dyn 36:119–137. doi: 10.1007/s00382-010-0759-5 CrossRefGoogle Scholar
  19. Kucharski F, Kang I-S, Farneti R, Feudale L (2011) Tropical Pacific response to 20th century Atlantic warming. Geophys Res Lett 38:L03702. doi: 10.1029/2010GL046248 CrossRefGoogle Scholar
  20. Kucharski F, Molteni F, King MP, Farneti R, Kang IS, Feudale L (2013) On the need of intermediate complexity general circulation models. BAMS 94:25–30. doi: 10.1175/BAMS-D-11-00238.1 CrossRefGoogle Scholar
  21. Kucharski F, Syed FS, Burhan A, Farah I, Gohar A (2014) Tropical Atlantic influence on Pacific variability and mean state in the twentieth century in observations and CMIP5. Climate Dyn. doi: 10.1007/s00382-014-2228-z
  22. L’Heureux ML, Lee S, Lyon B (2013) Recent multidecadal strengthening of the Walker circulation across the tropical Pacific. Nat Clim Change. doi: 10.1038/NCLIMATE1840
  23. Lu R, Chen W, Dong B (2008) How does a weakened Atlantic thermohaline circulation lead to an intensification of the ENSO-south Asian summer monsoon interaction? Geophys Res Lett 35:L08706. doi: 10.1029/2008GL033394 Google Scholar
  24. Madec G (2008) NEMO ocean engine. Note du Pole de modlisation, Institut Pierre-Simon Laplace (IPSL), France, No 27 ISSN No 1288–1619Google Scholar
  25. Martin-Rey M, Polo I, Rodriguez-Fonseca B, Kucharski F (2012) Changes in the interannual variability of the tropical Pacific as a response to an equatorial Atlantic forcing. Sci Mar 76:S1. doi: 10.3989/scimar.03610.19A CrossRefGoogle Scholar
  26. McGregor S, Timmermann A, Stuecker MF, England MH, Merrifield M, Jin F-F, Chikamoto Y (2014) Recent Walker circulation strengthening and Pacific cooling amplified by Atlantic warming. Nat Clim Change. doi: 10.1038/NCLIMATE2330
  27. Meehl GA, Hu A, Santer BD (2009) The mid-1970s climate shift in the Pacific and the relative roles of forced versus inherent decadal variability. J. Clim 22:780–792CrossRefGoogle Scholar
  28. Miller AJ, Cayan DR, Barnett TP, Graham NE, Oberhuber JM (1994) Interdecadal variability of the Pacific Ocean: model response to observed heat fluxes and wind stress anomalies. Clim Dyn 9:187–302CrossRefGoogle Scholar
  29. Molteni F (2003) Atmospheric simulations using a gcm with simplified physical parametrizations. I: model climatology and variability in multi-decadal experiments. Clim Dyn 20(2):175–191Google Scholar
  30. Parker D, Folland C, Scaife A, Knight J, Colman A, Baines P, Dong B (2007) Decadal to multidecadal variability and the climate change background. J Geophys Res 112(D18):115CrossRefGoogle Scholar
  31. Power S, Casey T, Folland C, Colman A, Mehta V (1999) Inter-decadal modulation of the impact of ENSO on Australia. Clim Dyn 15:319–324CrossRefGoogle Scholar
  32. Polo I, Martin-Rey M, Rodriguez-Fonseca B, Kucharski F, Mechoso CR (2014) Processes in the Pacific La Nina onset triggered by the Atlantic Nino. Clim Dyn. doi: 10.1007/s00382-014-2354-7
  33. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. 108, doi: 10.1029/2002JD002670
  34. Richter I, Xie S-P, Behera SK, Doi T, Masumoto Y (2014) Equatorial Atlantic variability and its relation to mean state biases in CMIP5. Clim Dyn 42:171–188. doi: 10.1007/s00382-012-1624-5 CrossRefGoogle Scholar
  35. Rodriguez-Fonseca B, Polo I, Garcia-Serrano J, Losada T, Mohino E, Mechoso CR, Kucharski F (2009) Are Atlantic Ninos enhancing Pacific ENSO events in recent decades? Geophys Res Lett 36:L20705. doi: 10.1029/2009GL040048 CrossRefGoogle Scholar
  36. Sasaki W, Doi T, Richards KJ, Masumoto Y (2014) Impact of the equatorial Atlantic sea surface temperature on the tropical Pacific in a CGCM. Clim Dyn 43:2539–2552. doi: 10.1007/s00382-014-2072-1 CrossRefGoogle Scholar
  37. Solomon A, Newman M (2012) Reconciling disparate 20th century Indo-Pacific ocean temperature trends in the instrumental record. Nat Clim Change 2:691–699CrossRefGoogle Scholar
  38. Timmermann A, Okumura Y, An S-I, Clement A, Dong B, Guilyardi E, Hu A, Jungclaus JH, Renold M, Stocker TF, Stouffer RJ, Sutton R, Xie S-P, Yin J (2007) The influence of a weakening of the Atlantic Meridional overturning circulation on ENSO. J Clim 20:4899–4919CrossRefGoogle Scholar
  39. Trenberth KE, Hurrell JW (1994) Decadal atmosphere-ocean variations in the Pacific. Clim Dyn 9:303–309CrossRefGoogle Scholar
  40. Valcke S (2006) OASIS3 User Guide (prism\_2-5). CERFACS Technical Report TR/CMGC/06/73, PRISM report no 3, Toulouse, France, p 60Google Scholar
  41. Xiang B, Wang B (2012) Mechanisms for the advanced Asian Summer Monsoon onset since the mid-to-late 1990s. J. Clim. doi: 10.1175/JCLI-D-12-00445.1
  42. Xi P, Arkin PA (1997) Global precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates and numerical model outputs. Bull Am Meteorol Soc 78:2539–2558CrossRefGoogle Scholar
  43. Xiang B, Wang B, Li T (2012) A new paradigm for the predominance of standing Central Pacific Warming after the late 1990s. Clim Dyn. doi: 10.1007/s00382-012-1427-8
  44. Yang C, Giese BS, Wu L (2014) Ocean dynamics and tropical Pacific climate change in ocean reanalyses and coupled climate models. J Geophys Res Oceans. doi: 10.1002/2014JC009979
  45. Zhang Y, Wallace JM, Battisti DS (1997) ENSO-like Interdecadal variability: 1900–93. J Clim 10:1004–1020CrossRefGoogle Scholar
  46. Zhang R, Delworth TL (2007) Impact of the Atlantic multidecadal oscillation on north pacific climate variability. Geophys Res Lett 34:L23708Google Scholar
  47. Zhang W, Li J, Zhao X (2010) Sea surface temperature cooling mode in the Pacific cold tongue. J Geophys Res 115:C12042. doi: 10.1029/2010JC006501 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Fred Kucharski
    • 1
    • 2
  • Farah Ikram
    • 3
  • Franco Molteni
    • 4
  • Riccardo Farneti
    • 1
  • In-Sik Kang
    • 5
  • Hyun-Ho No
    • 5
  • Martin P. King
    • 6
  • Graziano Giuliani
    • 1
  • Kristian Mogensen
    • 4
  1. 1.Abdus Salam International Centre for Theoretical Physics, Earth System Physics SectionTriesteItaly
  2. 2.Center of Excellence for Climate Change Research/Department of MeteorologyKing Abdulaziz UniversityJeddahSaudi Arabia
  3. 3.Pakistan Meteorological DepartmentIslamabadPakistan
  4. 4.European Centre For Medium-Range Weather ForecastsShinfield Park, ReadingUnited Kingdom
  5. 5.Seoul National UniversitySeoulKorea
  6. 6.Uni Research Climate and Bjerknes CentreBergenNorway

Personalised recommendations