Skip to main content

Advertisement

Log in

Troposphere–stratosphere response to large-scale North Atlantic Ocean variability in an atmosphere/ocean coupled model

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The instrumental records indicate that the basin-wide wintertime North Atlantic warm conditions are accompanied by a pattern resembling negative North Atlantic oscillation (NAO), and cold conditions with pattern resembling the positive NAO. This relation is well reproduced in a control simulation by the stratosphere resolving atmosphere–ocean coupled Max-Planck-Institute Earth System Model (MPI-ESM). Further analyses of the MPI-ESM model simulation shows that the large-scale warm North Atlantic conditions are associated with a stratospheric precursory signal that propagates down into the troposphere, preceding the wintertime negative NAO. Additional experiments using only the atmospheric component of MPI-ESM (ECHAM6) indicate that these stratospheric and tropospheric changes are forced by the warm North Atlantic conditions. The basin-wide warming excites a wave-induced stratospheric vortex weakening, stratosphere/troposphere coupling and a high-latitude tropospheric warming. The induced high-latitude tropospheric warming is associated with reduction of the growth rate of low-level baroclinic waves over the North Atlantic region, contributing to the negative NAO pattern. For the cold North Atlantic conditions, the strengthening of the westerlies in the coupled model is confined to the troposphere and lower stratosphere. Comparing the coupled and uncoupled model shows that in the cold phase the tropospheric changes seen in the coupled model are not well reproduced by the standalone atmospheric configuration. Our experiments provide further evidence that North Atlantic Ocean variability (NAV) impacts the coupled stratosphere/troposphere system. As NAV has been shown to be predictable on seasonal-to-decadal timescales, these results have important implications for the predictability of the extra-tropical atmospheric circulation on these time-scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Andrews DG, Holton JR, Leovy CB (1987) Middle atmosphere dynamics. Academic Press, London

    Google Scholar 

  • Ba J et al (2014) A multi-model comparison of Atlantic multidecadal variability. Clim Dyn. doi:10.1007/s00382-014-2056-1

    Google Scholar 

  • Bader J, Latif M (2003) The impact of decadal-scale Indian Ocean sea surface temperature anomalies on Sahelian rainfall and the North Atlantic Oscillation. Geophys Res Lett 30(22):2169. doi:10.1029/2003gl018426

    Article  Google Scholar 

  • Baldwin MP, Dunkerton TJ (1999) Downward propagation of the Arctic Oscillation from the stratosphere to the troposphere. J Geophys Res 104:30937–30946

    Article  Google Scholar 

  • Booth BBB, Dunstone NJ, Halloran PR, Andrews T, Bellouin N (2012) Aerosols implicated as a prime driver of twentieth-century North Atlantic climate variability (vol 484, pg 228, 2012). Nature 485(7399):534. doi:10.1038/Nature11138

    Google Scholar 

  • Cagnazzo C, Manzini E (2009) Impact of the stratosphere on the winter tropospheric teleconnections between ENSO and the North Atlantic and European Region. J Clim 22(5):1223–1238. doi:10.1175/2008jcli2549.1

    Article  Google Scholar 

  • Charney JG, Drazin PG (1961) Propagation of Planetary-Scale disturbances from the lower into the upper atmosphere. J Geophys Res 66(1):83–109. doi:10.1029/JZ066i001p00083

    Article  Google Scholar 

  • Chen H, Schneider EK (2014) Comparison of the SST-forced responses between coupled and uncoupled climate simulations. J Clim 27(2):740–756. doi:10.1175/Jcli-D-13-00092.1

    Article  Google Scholar 

  • Chen H, Schneider EK, Kirtman BP, Colfescu I (2013) Evaluation of weather noise and its role in climate model simulations. J Clim 26(11):3766–3784. doi:10.1175/Jcli-D-12-00292.1

    Article  Google Scholar 

  • Czaja A, Robertson AW, Huck T (2003) The role of atlantic ocean–atmosphere coupling in affecting North Atlantic Oscillation variability. In: Hurrell JW, Kushnir Y, Ottersen G, Visbeck M (eds) The North Atlantic Oscillation: climate significance and environmental impact. Am Geophys Union, Washington, DC, pp 147–172

    Chapter  Google Scholar 

  • Delworth T, Manabe S, Stouffer RJ (1993) Interdecadal variations of the thermohaline circulation in a coupled ocean–atmosphere model. J Clim 6:1993–2011

    Article  Google Scholar 

  • Deser C, Blackmon ML (1993) Surface climate variations over the North-Atlantic Ocean during Winter—1900–1989. J Clim 6(9):1743–1753

    Article  Google Scholar 

  • Deser C, Thomas RA, Peng S (2007) The transient atmospheric circulation response to North Atlantic SST and Sea Ice anomalies. J Clim 20(18):4751–4767

    Article  Google Scholar 

  • Eden C, Jung T (2001) North Atlantic interdecadal variability: oceanic response to the North Atlantic Oscillation (1865–1997). J Clim 14(5):676–691

    Article  Google Scholar 

  • Eden C, Willebrand J (2001) Mechanism of interannual to decadal variability of the North Atlantic circulation. J Clim 14(10):2266–2280

    Article  Google Scholar 

  • Fletcher CG, Kushner PJ (2011) The role of linear interference in the annular mode response to tropical SST forcing. J Clim 24(3):778–794. doi:10.1175/2010jcli3735.1

    Article  Google Scholar 

  • Garfinkel CI, Hartmann DL, Sassi F (2010) Tropospheric precursors of anomalous northern hemisphere stratospheric polar vortices. J Clim 23(12):3282–3299. doi:10.1175/2010jcli3010.1

    Article  Google Scholar 

  • Garfinkel CI, Butler AH, Waugh DW, Hurwitz MM, Polvani LM (2012) Why might stratospheric sudden warmings occur with similar frequency in El Nino and La Nina winters? J Geophys Res-Atmos 117:D19106. doi:10.1029/2012jd017777

    Article  Google Scholar 

  • Gastineau G, Frankignoul C (2012) Cold-season atmospheric response to the natural variability of the Atlantic meridional overturning circulation. Clim Dyn 39(1–2):37–57. doi:10.1007/S00382-011-1109-Y

    Article  Google Scholar 

  • Giorgetta MA et al (2013) Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the coupled model intercomparison project phase 5. J Adv Model Earth Syst 5(3):572–597. doi:10.1002/Jame.20038

    Article  Google Scholar 

  • Hansen F, Matthes K, Petrick C, Wang W (2014) The influence of natural and anthropogenic factors on major stratospheric sudden warmings. J Geophys Res Atmos 119(13):8117. doi:10.1002/2013jd021397

    Article  Google Scholar 

  • Haynes PH (2005) Stratospheric dynamics. Annu Rev Fluid Mech 37:263–293

    Article  Google Scholar 

  • Hodson DLR, Sutton RT, Cassou C, Keenlyside N, Okumura Y, Zhou TJ (2010) Climate impacts of recent multidecadal changes in Atlantic Ocean sea surface temperature: a multimodel comparison. Clim Dynam 34(7–8):1041–1058. doi:10.1007/S00382-009-0571-2

    Article  Google Scholar 

  • Hoerling MP, Hurrell JW, Xu TY (2001) Tropical origins for recent North Atlantic climate change. Science 292(5514):90–92

    Article  Google Scholar 

  • Holton JR, Tan HC (1980) The influence of the equatorial quasi-biennial oscillation on the global circulation at 50 Mb. J Atmos Sci 37(10):2200–2208. doi:10.1175/1520-0469(1980)037<2200:Tioteq>2.0.Co;2

    Article  Google Scholar 

  • Hoskins BJ, Karoly DJ (1981) The steady linear response of a spherical atmosphere to thermal and orographic forcing. J Atmos Sci 38(6):1179–1196

    Article  Google Scholar 

  • Hoskins BJ, Valdes PJ (1990) On the existence of storm-tracks. J Atmos Sci 47(15):1854–1864. doi:10.1175/1520-0469(1990)047<1854:oteost>2.0.co;2

    Article  Google Scholar 

  • Hurwitz MM, Newman PA, Garfinkel CI (2012) On the influence of North Pacific sea surface temperature on the Arctic winter climate. J Geophys Res Atmos 117:D19110. doi:10.1029/2012jd017819

    Article  Google Scholar 

  • Ineson S, Scaife AA (2009) The role of the stratosphere in the European climate response to El Nino. Nat Geosci 2(1):32–36. doi:10.1038/Ngeo381

    Article  Google Scholar 

  • Jungclaus JH, Haak H, Latif M, Mikolajewicz U (2005) Arctic–North Atlantic interactions and multidecadal variability of the meridional overturning circulation. J Clim 18(19):4013–4031. doi:10.1175/Jcli3462.1

    Article  Google Scholar 

  • Karpechko AY, Manzini E (2012) Stratospheric influence on tropospheric climate change in the Northern Hemisphere. J Geophys Res Atmos. doi:10.1029/2011jd017036

    Google Scholar 

  • Kavvada A, Ruiz-Barradas A, Nigam S (2013) AMO’s structure and climate footprint in observations and IPCC AR5 climate simulations. Clim Dynam 41(5–6):1345–1364. doi:10.1007/S00382-013-1712-1

    Article  Google Scholar 

  • Keenlyside NS, Ba J, Mecking J, Omrani N-O, Latif M, Zhang R, Msadek R (2014) North Atlantic multi-decadal variability—mechanisms and predictability. In: Chang C-P, Ghil M, Latif M, Wallace M (eds) Climate change: multidecadal and beyond. World Scientific Publishing, Singapore

    Google Scholar 

  • Knight JR, Allan RJ, Folland CK, Vellinga M, Mann ME (2005) A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys Res Lett 32(20):L20708. doi:10.1029/2005gl024233

    Article  Google Scholar 

  • Kushnir Y (1994) Interdecadal variations in North Atlantic sea surface temperature and associated atmospheric conditions. J Clim 7:141–157

    Article  Google Scholar 

  • Kushnir Y, Robinson WA, Blade I, Hall NMJ, Peng S, Sutton R (2002) Atmospheric GCM response to extratropical SST anomalies: synthesis and evaluation. J Clim 15(16):2233–2256

    Article  Google Scholar 

  • Latif M, Keenlyside NS (2011) A perspective on decadal climate variability and predictability. Deep Sea Res II 58:1880–1894

    Article  Google Scholar 

  • Limpasuvan V, Hartmann DL (1999) Eddies and the annular modes of climate variability. Geophys Res Lett 26(20):3133–3136

    Article  Google Scholar 

  • Limpasuvan V, Hartmann D (2000) Wave-maintained annulare modes of climate variability. J Clim 13:4414–4429

    Article  Google Scholar 

  • Lorenz DJ, Hartmann DL (2003) Eddy-zonal flow feedback in the Northern Hemisphere winter. J Clim 16:1212–1227

    Article  Google Scholar 

  • Mann ME, Emanuel KA (2006) Atlantic hurricane trends linked to climate change. EOS Trans AGU 87(24):233. doi:10.1029/2006EO240001

    Article  Google Scholar 

  • Manzini E, Giorgetta MA, Esch M, Kornblueh L, Roeckner E (2006) The influence of sea surface temperatures on the northern winter stratosphere: ensemble simulations with the MAECHAM5 model. J Clim 19(16):3863–3881

    Article  Google Scholar 

  • Manzini E, Cagnazzo C, Fogli PG, Bellucci A, Muller WA (2012) Stratosphere–troposphere coupling at inter-decadal time scales: implications for the North Atlantic Ocean. Geophys Res Lett 39:L05801. doi:10.1029/2011gl050771

    Article  Google Scholar 

  • Mecking J, Keenlyside N, Greatbatch R (2013) Stochastically-forced multidecadal variability in the North Atlantic: a model study. Clim Dyn. doi:10.1007/s00382-013-1930-6

    Google Scholar 

  • Medhaug I, Furevik T (2011) North Atlantic 20th century multidecadal variability in coupled climate models: sea surface temperature and ocean overturning circulation. Ocean Sci Discuss 8(1):353–396. doi:10.5194/osd-8-353-2011

    Article  Google Scholar 

  • Newman PA, Nash ER, Rosenfield JE (2001) What controls the temperature of the Arctic stratosphere during the spring? J Geophys Res Atmos 106(D17):19999–20010. doi:10.1029/2000jd000061

    Article  Google Scholar 

  • Nishii K, Nakamura H, Miyasaka T (2009) Modulations in the planetary wave field induced by upward-propagating Rossby wave packets prior to stratospheric sudden warming events: a case-study. Q J R Meteor Soc 135(638):39–52. doi:10.1002/Qj.359

    Article  Google Scholar 

  • Omrani NE, Keenlyside NS, Bader J, Manzini E (2014) Stratosphere key for wintertime atmospheric response to warm Atlantic decadal conditions. Clim Dynam 42(3–4):649–663. doi:10.1007/S00382-013-1860-3

    Article  Google Scholar 

  • Ottera OH, Bentsen M, Drange H, Suo LL (2010) External forcing as a metronome for Atlantic multidecadal variability. Nat Geosci 3(10):688–694

    Article  Google Scholar 

  • Peings Y, Magnusdottir G (2014a) Forcing of the wintertime atmospheric circulation by the multidecadal fluctuations of the North Atlantic Ocean. Environ Res Lett 9(3):034018. doi:10.1088/1748-9326/9/3/034018

    Article  Google Scholar 

  • Peings Y, Magnusdottir G (2014b) Response of the wintertime Northern Hemisphere atmospheric circulation to current and projected Arctic Sea ice decline: a numerical study with CAM5. J Clim 27(1):244–264. doi:10.1175/Jcli-D-13-00272.1

    Article  Google Scholar 

  • Peng S, Robinson WR, Li S (2003) Mechanisms for the NAO responses to the North Atlantic SST tripole. J Climate 16:1987

    Article  Google Scholar 

  • Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108(D14):4407. doi:10.1029/2002JD002670

    Article  Google Scholar 

  • Reichler T, Kim J, Manzini E, Kroger J (2012) A stratospheric connection to Atlantic climate variability. Nat Geosci 5(11):783–787. doi:10.1038/Ngeo1586

    Article  Google Scholar 

  • Ruiz-Barradas A, Nigam S, Kavvada A (2013) The Atlantic multidecadal oscillation in twentieth century climate simulations: uneven progress from CMIP3 to CMIP5. Clim Dyn 41(11–12):3301–3315. doi:10.1007/S00382-013-1810-0

    Article  Google Scholar 

  • Stevens B et al (2013) Atmospheric component of the MPI-M earth system model: ECHAM6. J Adv Model Earth Syst 5(2):146–172. doi:10.1002/Jame.20015

    Article  Google Scholar 

  • Sutton RT, Hodson DLR (2005) Atlantic Ocean forcing of North American and European summer climate. Science 309:115–118

    Article  Google Scholar 

  • Terray L, Cassou C (2002) Tropical Atlantic sea surface temperature forcing of quasi-decadal climate variability over the North Atlantic-European region. J Clim 15(22):3170–3187

    Article  Google Scholar 

  • Thompson DWJ, Wallace JM (2000) Annular modes in the extratropical circulation. Part I: month-to-month variability. J Clim 13(5):1000–1016

    Article  Google Scholar 

  • Thompson DWJ, Wallace JM, Hegerl GC (2000) Annular modes in the extratropical circulation. Part II: trends. J Clim 13(5):1018–1036

    Article  Google Scholar 

  • Vellinga M, Wu PL (2004) Low-latitude freshwater influence on centennial variability of the Atlantic thermohaline circulation. J Clim 17(23):4498–4511. doi:10.1175/3219.1

    Article  Google Scholar 

  • Visbeck M, Chassignet E, Curry R, Delworth T, Dickson B, Krahmann G (2003) The ocean’s response to North Atlantic Oscillation variability, in “The North Atlantic Oscillation. In: Hurrell JW, Kushnir Y, Ottersen G, Visbeck M (eds) The North Atlantic Oscillation: climate significance and environmental impact. American Geophysical Union, Washington, DC, pp 113–146

    Chapter  Google Scholar 

  • Zanchettin D, Rubino A, Matei D, Bothe O, Jungclaus JH (2012) Multidecadal-to-centennial SST variability in the MPI–ESM simulation ensemble for the last millennium. Clim Dyn. doi:10.1007/s00382-012-1361-9

    Google Scholar 

  • Zanchettin D, Bothe O, Muller W, Bader J, Jungclaus JH (2014) Different flavors of the Atlantic multidecadal variability. Clim Dyn 42(1–2):381–399. doi:10.1007/S00382-013-1669-0

    Article  Google Scholar 

  • Zhang R, Delworth TL (2006) Impact of Atlantic multidecadal oscillations on India/Sahel rainfall and Atlantic hurricanes. Geophys Res Lett 33(17):L17712. doi:10.1029/2006gl026267

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Sandro Wellyanto Lubis, Hisashi Nakamura, Marco Giorgetta and Mojib Latif for many fruitful discussion. Computing resources at the Deutsche Klimarechenzentrum, and the Norddeutscher Verbund für Hoch—und Höchstleistungsrechnen are also acknowledged. We are also grateful to our reviewers for the very constructive comments. The work was supported by the Deutsche Forschungsgemeinschaft under the Emmy Noether—Programm (Grant KE 1471/2-1); also by the European Union SUMO (ERC Grant # 266722) and STEPS (PCIG10-GA-2011-304243) projects; the DecCen project funded by the research council of Norway; by the Centre for Climate Dynamics at the Bjerknes centre, Norway; by the Max-Planck-Society, and by the Federal Ministry of Education and Research in Germany (BMBF) through the research programme ‘‘MiKlip’’ (FKZ: 01LP1158A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N.-E. Omrani.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 4120 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Omrani, NE., Bader, J., Keenlyside, N.S. et al. Troposphere–stratosphere response to large-scale North Atlantic Ocean variability in an atmosphere/ocean coupled model. Clim Dyn 46, 1397–1415 (2016). https://doi.org/10.1007/s00382-015-2654-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-015-2654-6

Keywords

Navigation