Skip to main content

Potential climate effect of mineral aerosols over West Africa. Part I: model validation and contemporary climate evaluation

Abstract

Mineral dusts present in the atmosphere can play an important role in climate over West Africa and surrounding regions. However, current understanding regarding how dust aerosols influence climate of West Africa is very limited. In this study, a regional climate model is used to investigate the potential climatic impacts of dust aerosols. Two sets of simulations driven by reanalysis and Earth System Model boundary conditions are performed with and without the representation of dust processes. The model, regardless of the boundary forcing, captures the spatial and temporal variability of the aerosol optical depth and surface concentration. The shortwave radiative forcing of dust is negative at the surface and positive in the atmosphere, with greater changes in the spring and summer. The presence of mineral dusts causes surface cooling and lower troposphere heating, resulting in a stabilization effect and reduction in precipitation in the northern portion of the monsoon close to the dust emissions region. This results in an enhancement of precipitation to the south. While dusts cause the lower troposphere to stabilize, upper tropospheric cooling makes the region more prone to intense deep convection as is evident by a simulated increase in extreme precipitation. In a companion paper, the impacts of dust emissions on future West African climate are investigated.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  • Alfaro SC, Gomes L (2001) Modeling mineral aerosol production by wind erosion: emission intensities and aerosol size distribution in source areas. J Geophys Res 106:18075–18084. doi:10.1029/2000JD900339

    Article  Google Scholar 

  • Ansmann A, Petzold A, Kandler K, Tegen I, Wendisch M, Muller D, Weinzierl B, Muller T, Heintzen-berg J (2011) Saharan mineral dust experiments SAMUM-1 and SAMUM-2: What have we learned? Tellus B 63:403–429. doi:10.1111/j.1600-0889.2011.00555.x

    Article  Google Scholar 

  • Ansell C, Brindley HE, Pradhan Y, Saunders R (2014) Mineral dust aerosol net direct radiative effect during GERBILS field campaign period derived from SEVIRI and GERB. J Geophys Res Atmos 119:4070–4086. doi:10.1002/2013JD020681

    Article  Google Scholar 

  • Bauer S, Bierwirth E, Esselborn M, Petzold A, Marcke A, Trautmann T, Wendisch M (2011) Airborne spectral radiation measurements to derive solar radiative forcing of Saharan dust mixed with biomass burning smoke particles. Tellus B 63:742–750. doi:10.1111/j.1600-0889.2011.00567.x

    Article  Google Scholar 

  • Boucher O, Randall D, Artaxo P, Bretherton C, Feingold G, Forster P, Kerminen VM, Kondo Y, Liao H, Lohmann U, Rasch P, Satheesh SK, Sherwood S, Stevens B and Zhang XY (2013) Clouds and aerosols. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

  • Chiapello I, Bergametti G, Dulac F, Gomes L, Chatenet B, Pimenta J, Santos Soares E (1995) An additional low layer transport of Sahelian and Saharan dust over the North-Eastern Tropical Atlantic. Geophys Res Lett 22:3191–3194

    Article  Google Scholar 

  • Decker M and Zeng X (2009) Impact of modified Richards equation on global soil moisture simulation in the Community Land Model (CLM3.5). J Adv Model Earth Syst 1(3). doi:10.3894/JAMES.2009.1.5

  • Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Hólm EV, Isaksen L, Kållberg P, Köhler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette J-J, Park B-K, Peubey C, de Rosnay P, Tavolato C, Thépaut J-N, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. QJR Meteorol Soc 137:553–597. doi:10.1002/qj.828

    Article  Google Scholar 

  • Emanuel KA (1991) A scheme for representing cumulus convection in large-scale models. Q J R Meteorol Soc 48:2313–2335

    Google Scholar 

  • Fan JW, Leung LR, Rosenfeld D, Chen Q, Li ZQ, Zhang JQ, Yan HR (2013) Microphysical effects determine macrophysical response for aerosol impacts on deep convective clouds. Proc Natl Acad Sci USA 110(48):E4581–E4590. doi:10.1073/pnas.1316830110

    Article  Google Scholar 

  • Frich P, Alexander LV, Della-Marta P, Gleason B, Haylock M, Klein Tank AM, Peterson T (2002) Observed coherent changes in climate extremes during the second half of the twentieth century. Clim Res 19:193–212

    Article  Google Scholar 

  • Giorgi F, Coppola E, Solmon F, Mariotti L, Sylla MB, Bi XQ, Elguindi N, Diro GT, Nair V, Giuliani G, Turuncoglu UU, Cozzini S, Güttler I, O’Brien TA, Tawfik AB, Shalaby A, Zakey AS, Steiner AL, Stordal F, Sloan LC, Brankovic C (2012) RegCM4: model description and preliminary tests over multiple CORDEX domains. Clim Res 52:7–29

    Article  Google Scholar 

  • Grell GA, Dudhia J, Stauer DR (1994) A description of the fifth-generation Penn State/NCAR Mesoscale Model (MM5). Technical report. National Center for Atmospheric Research. Boulder, CO, 121 pp

  • Haywood J, Boucher O (2000) Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: a review. Rev Geophys 38(4):513–543

    Article  Google Scholar 

  • Haywood J, Francis P, Glew M, Taylor J (2001) Optical properties and direct radiative effect of Saharan dust: a case study of two Saharan dust outbreaks using aircraft data. J Geophys Res 106(D16):18417–18430

  • Haywood JM, Osborne SR, Francis PN, Keil A, Formenti P, Andreae MO, Kaye PH (2003) The mean physical and optical properties of regional haze dominated by biomass burning aerosol measured from the C-130 aircraft during SAFARI 2000. J Geophys Res 108:8473. doi:10.1029/2002JD002226

    Article  Google Scholar 

  • Haywood JM, Pelon J, Formenti P, Bharmal N, Brooks M, Capes G, Chazette P, Chou C, Christopher S, Coe H, Cuesta J, Derimian Y, Desboeufs K, Greed G, Harrison M, Heese B, Highwood EJ, Johnson B, Mallet M, Marticorena B, Marsham J, Milton S, Myhre G, Osborne SR, Parker DJ., Rajot J.-L., Schultz M, Slingo A, Tanre D, Tulet P. (2008) Overview of the dust and biomass-burning experiment and African monsoon multidisciplinary analysis special observing period-0. J Geophys Res 113:D00C17. doi:10.1029/2008JD010077

  • Holben BN, Tanre D, Smirnov A, Eck TF, Slutsker I, Abuhassan N, Newcomb WW, Schafer J, Chatenet B, Lavenu F, Kaufman YJ, Vande Castle J, Setzer A, Markham B, Clark D, Frouin R, Halthore R, Karnieli A, O’Neill NT, Pietras C, Pinker RT, Voss K, Zibordi G (2001) An emerging ground-based aerosol climatology: aerosol Optical Depth from AERONET. J Geophys Res 106(D11):12067–12098

    Article  Google Scholar 

  • Junker C, Liousse C (2008) A global emission inventory of carbonaceous aerosol from historic records of fossil fuel and biofuel consumption for the period 1860–1997. Atmos Chem Phys 8:1195–1207. doi:10.5194/acp-8-1195-2008

    Article  Google Scholar 

  • K-1 Model Developers (2004) K-1 Coupled GCM (MIROC) Description, K-1 Technical Report No.1, Center for Climate System Research (Univ. of Tokyo), National Institute for Environmental Studies, and Frontier Research Center for Global Change. http://www.ccsr.u-tokyo.ac.jp/kyosei/hasumi/MIROC/tech-repo.pdf. Accessed 30 Sept 2011

  • Kim KM, Lau KM, Sud YC, Walker GK (2010) Influence of aerosol-radiative forcings on the diurnal and seasonal cycles of rainfall over West Africa and Eastern Atlantic Ocean using GCM simulations. Clim Dyn 35:115–126. doi:10.1007/s00382-010-0750-1

    Article  Google Scholar 

  • Konare A, Zakey AS, Solmon F, Giorgi F, Rauscher S, Ibrah S, Bi X (2008) A regional climate modeling study of the effect of desert dust on the West African monsoon. J Geophys Res 113:D12206. doi:10.1029/2007JD009322

    Article  Google Scholar 

  • Lau KM, Kim KM, Sud YC, Walker GK (2009) A GCM study of the response of the atmospheric water cycle of West Africa and the Atlantic to Saharan dust radiative forcing. Ann Geophys 27:4023–4037. doi:10.5194/angeo-27-4023-2009

    Article  Google Scholar 

  • Lawrence PJ, Chase TN (2007) Representing a new MODIS consistent land surface in the Community Land Model (CLM 3.0). J Geophys Res 112:G01023. doi:10.1029/2006JG000168

    Google Scholar 

  • Lawrence DM, Oleson KW, Flanner MG, Thornton PE, Swenson SC, Lawrence PJ, Zeng X, Yang ZL, Levis S, Sakaguchi K, Bonan GB, Slater AG (2011) Parameterization improvements and functional and structural advances in version 4 of the Community Land Model. J Adv Model Earth Sys 3. doi:10.1029/2011MS000045

  • Legates DR, Willmott CJ (1990a) Mean seasonal and spatial variability in gauge—corrected, global precipitation. Int J Climatol 10(2):111–127

    Article  Google Scholar 

  • Legates DR, Willmott CJ (1990b) Mean seasonal and spatial variability in global surface air temperature. Theoret Appl Climatol 41(1):11–21

    Article  Google Scholar 

  • Li Z, Niu F, Fan JW, Liu YG, Rosenfeld D, Ding YN (2011) Long-term impacts of aerosols on the vertical development of clouds and precipitation. Nat Geosci 4(12):888–894

    Article  Google Scholar 

  • Liousse C, Guillaume B, Gregoire JM, Mallet M, Galy C, Pont V, Akpo A, Bedou M, Castera P, Dungall L, Gardrat E, Granier C, Konare A, Malavelle F, Mariscal A, Mieville A, Rosset R, Serca D, Solmon F, Tummon F, Assamoi E, Yoboue V, Velthoven PV (2010) Updated African biomass burning emission inventories in the framework of the AMMA-IDAF program, with an evaluation of combustion aerosols. Atmos Chem Phys 10:9631–9646. doi:10.5194/acp-10-9631-2010

    Article  Google Scholar 

  • Mallet M, Tulet P, Serça D, Solmon F, Dubovik O, Pelon J, Pont V, Thouron O (2009) Impact of dust aerosols on the radiative budget, surface heat fluxes, heating rate profiles and convective activity over West Africa during March 2006. Atmos Chem Phys 9:7143–7160. doi:10.5194/acp-9-7143-2009

    Article  Google Scholar 

  • Marcella MP, Eltahir EAB (2010) Effects of mineral aerosols on the summertime climate of southwest Asia: incorporating subgrid variability in a dust emission scheme. J Geophys Res 115:D18203. doi:10.1029/2010JD014036

    Article  Google Scholar 

  • Marcella MP, Eltahir EAB (2014) The role of mineral aerosols in shaping the regional climate of West Africa. J Geophys Res Atmos 119. doi:10.1002/2012JD019394

  • Marticorena B, Chatenet B, Rajot JL, Traore S, Coulibaly M, Diallo A, Kone I, Maman A, Diaye T, Zakou A (2010) Temporal variability of mineral dust concentrations over West Africa: analyses of a pluriannual monitoring from the AMMA Sahelian Dust Transect. Atmos Chem Phys 10:8899–8915. doi:10.5194/acp-10-8899-2010

    Article  Google Scholar 

  • Miller RL, Tegen I, Perlwitz J (2004) Surface radiative forcing by soil dust aerosols and the hydrologic cycle. J Geophys Res 109:D04203. doi:10.1029/2003JD004085

    Google Scholar 

  • Myhre G, Hoyle CR, Berglen TF, Johnson BT, Haywood JM (2008) Modeling of the solar radiative impact of biomass burning aerosols during the dust and biomass-burning experiment (DABEX). J Geophys Res 113:D00C16. doi:10.1029/2008JD009857

  • Myhre G, Shindell D, Bréon FM, Collins W, Fuglestvedt J, Huang J, Koch D, Lamarque JF, Lee D, Mendoza B, Nakajima T, Robock A, Stephens G, Takemura T, Zhang H (2013) Anthropogenic and natural radiative forcing. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V and Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

  • Nabat P, Solmon F, Mallet M, Kok JF, Somot S (2012) Dust emission size distribution impact on aerosol budget and radiative forcing over the Mediterranean region: a regional climate model approach. Atmos Chem Phys 12:10545–10567. doi:10.5194/acp-12-10545-2012

    Article  Google Scholar 

  • Nozawa T, Nagashima T, Ogura T, Yokohata T, Okada N, Shiogama H (2007). Climate change simulations with a coupled ocean-atmosphere GCM called the Model for Interdisciplinary Research on Climate: MIROC, CGER Supercomput. Monogr. Rep., 12, Center for global environmental research, national institute for environmental studies, Tsukuba, Japan

  • Ogunjobi KO, He Z, Simmer C (2008) Spectral aerosol optical properties from AERONET Sun-photometric measurements over West Africa. Atmos Res 88:89–107

    Article  Google Scholar 

  • Oleson KW, Lawrence DM, Bonan GB, Flanner MG, Kluzek E, Lawrence PJ, Levis S, Swenson SC, Thornton PE, Dai A, Decker M, Dickinson R, Feddema J, Heald CL, Hoffman F, Lamarque JF, Mahowald N, Niu GY, Qian T, Randerson J, Running S, Sakaguchi K, Slater A, Stockli R, Wang A, Yang ZL, Zeng XD, Zeng XB (2010) Technical description of version 4.0 of the Community Land Model (CLM). NCAR Technical Note NCAR/TN-478 + STR, National Center for Atmospheric Research, Boulder, CO, 257 pp

  • Pal JS, Giorgi F, Bi X, Elguindi N, Solmon F, Rauscher SA, Gao X, Francisco R, Zakey A, Winter J, Ashfaq M, Syed FS, Sloan LC, Bell JL, Diffenbaugh NS, Karmacharya J, Konaré A, Martinez D, da Rocha RP, Steiner AL (2007) Regional climate modeling for the developing world: the ICTP RegCM3 and RegCNET. Bull Am Meteorol Soc 88(9):1395–1409

    Article  Google Scholar 

  • Prospero JM (1999) Long-range transport of mineral dust in the global atmosphere: impact of African dust on the environment of the southeastern United States. PNAS 96(7):3396–3403. doi:10.1073/pnas.96.7.3396

  • Prospero JM, Ginoux P, Torres O, Nicholson SE, Gill TE (2002) Environmental characterization of global sources of atmospheric soil dust identified with the NIMBUS 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product. Rev Geophys 40(1):1002. doi:10.1029/2000RG000095

    Article  Google Scholar 

  • Qian Y, Giorgi F, Huang Y, Chameides WL, Luo C (2001) Simulation of anthropogenic sulfur over East Asia with a regional coupled chemistry-climate model. Tellus B 53B:171–191

    Article  Google Scholar 

  • Reynolds RW, Rayner NA, Smith TM, Stokes DC, Wang W (2002) An improved in situ and satellite SST analysis for climate. J Clim 15(13):1609–1625

    Article  Google Scholar 

  • Schmechtig C, Marticorena B, Chatenet B, Bergametti G, Rajot JL, Coman A (2011) Simulation of the mineral dust content over western Africa with the CHIMERE-DUST model from the event to the annual scale. Atmos Chem Phys 11:7185–7207. doi:10.5194/acp-11-7185-2011

    Article  Google Scholar 

  • Schuster GL, Vaughan M, MacDonnell D, Su W, Winker D, Dubovik O, Lapyonok T, Trepte C (2012) Comparison of CALIPSO aerosol optical depth retrievals to AERONET measurements, and a climatology for the lidar ratio of dust. Atmos Chem Phys 12:7431–7452. doi:10.5194/acp-12-7431-2012

    Article  Google Scholar 

  • Slingo A, Ackerman TP, Allan RP, Kassianov EI, McFarlane SA, Robinson GJ, Barnard JC, Miller MA, Harries JE, Russell JE, Dewitte S (2006) Observations of the impact of a major Saharan dust storm on the atmospheric radiation balance. Geophys Res Lett 33:L24817. doi:10.1029/2006GL027869

    Article  Google Scholar 

  • Solmon F, Giorgi F, Liousse C (2006) Aerosol modeling for regional climate studies: application to anthropogenic particles and evaluation over a European/African domain. Tellus B 58(1):51–72

    Article  Google Scholar 

  • Solmon F, Mallet M, Elguindi N, Giorgi F, Zakey A, Konare A (2008) Dust aerosol impact on regional precipitation over western Africa, mechanisms and sensitivity to absorption properties. Geophys Res Lett 35:L24705. doi:10.1029/2008GL035900

    Article  Google Scholar 

  • Solmon F, Elguindi N, Mallet M (2012) Radiative and climatic effects of dust overWest Africa, as simulated by a regional climate model. Clim Res 52:97–113

    Article  Google Scholar 

  • Steiner A, Pal J, Rauscher S, Bell J, Diffenbaugh N, Boone A, Sloan L, Giorgi F (2009) Land surface coupling in regional climate simulations of the West African monsoon. Clim Dyn 33(6):869–892. doi:10.1007/s00382-009-0543-6

    Article  Google Scholar 

  • Sylla BM, Coppola E, Mariotti L, Giorgi F, Ruti PM, Dell’Aquila A, Bi X (2010) Multiyear simulation of the African climate using a regional climate model (RegCM3) with the high resolution ERA-interim reanalysis. Clim Dyn 35(1):231–247

    Article  Google Scholar 

  • Tummon F, Solmon F, Liousse C, Tadross M (2010) Simulation of the direct and semidirect aerosol effects on the southern Africa regional climate during the biomass burning season. J Geophys Res 115:D19206. doi:10.1029/2009JD013738

    Article  Google Scholar 

  • Valenzuela A, Olmo FJ, Lyamani H, Antón M, Quirantes A, Alados-Arboledas L (2012) Aerosol radiative forcing during African desert dust events (2005–2010) over Southeastern Spain. Atmos Chem Phys 12:10331–10351. doi:10.5194/acp-12-10331-2012

    Article  Google Scholar 

  • Wang DG, Jiang P, Wang GL (2015a) Urban extent enhances extreme precipitation over the Pearl River Delta, China. Atmos Sci Lett. doi:10.1002/asl2.559

  • Wang G, Yu M, Pal JS, Mei R, Bonan GB, Levis S, Thornton PE (2015b) On the development of a coupled regional climate–vegetation model RCM–CLM–CN–DV and its validation in Tropical Africa. Clim Dyn. doi:10.1007/s00382-015-2596-z

  • Watanabe S, Hajima T, Sudo K, Nagashima T, Takemura T, Okajima H, Nozawa T, Kawase H, Abe M, Yokohata T, Ise T, Sato H, Kato E, Takata K, Emori S, Kawamiya M (2011) MIROC-ESM 2010: model description and basic results of CMIP5-20c3 m experiments. Geosci Model Dev 4:845–872. doi:10.5194/gmd-4-845-2011

    Article  Google Scholar 

  • Yoshioka M, Mahowald NM, Conley AJ, Collins WD, Fillmore DW, Zender CS, Coleman DB (2007) Impact of desert dust radiative forcing on Sahel precipitation: relative importance of dust compare to sea surface temperature variations, vegetation changes and greenhouse gas warming. J Clim 20:1445–1467. doi:10.1175/JCLI4056.1

    Article  Google Scholar 

  • Yu M, Wang GL (2014) Impacts of bias correction of lateral boundary conditions on regional climate projections in West Africa. Clim Dyn 42(9–10):2521–2538. doi:10.1007/s00382-013-1853-2

    Article  Google Scholar 

  • Yu M, Wang GL, Parr DT, Ahmed KF (2014) Future changes of the terrestrial ecosystem based on a dynamic vegetation model driven with RCP8.5 climate projections from 19 GCMs. Clim Chang 127:257–271. doi:10.1007/s10584-014-1249-2

    Article  Google Scholar 

  • Zakey AS, Solmon F, Giorgi F (2006) Implementation and testing of a desert dust module in a regional climate model. Atmos Chem Phys 6:4687–4704. doi:10.5194/acp-6-4687-2006

    Article  Google Scholar 

  • Zhang DF, Zakey AS, Gao XJ, Giorgi F, Solmon F (2009) Simulation of dust aerosol and its regional feedbacks over East Asia using a regional climate model. Atmos Chem Phys 9:1095–1110

    Article  Google Scholar 

  • Zhao C, Liu X, Leung LR, Hagos S (2011) Radiative impact of mineral dust on monsoon precipitation variability over West Africa. Atmos Chem Phys 11:1879–1893. doi:10.5194/acp-11-1879-2011

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by funding from NSF (AGS-1049017, AGS-1049186, AGS-1063986, and AGS-1064008) and the Academy of Finland (Decision number 268170). Computing support was provided by NCAR through HPC resources on Yellowstone.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenming Ji.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ji, Z., Wang, G., Pal, J.S. et al. Potential climate effect of mineral aerosols over West Africa. Part I: model validation and contemporary climate evaluation. Clim Dyn 46, 1223–1239 (2016). https://doi.org/10.1007/s00382-015-2641-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-015-2641-y

Keywords

  • Mineral aerosols
  • Climatic effects
  • Regional climate model
  • West Africa