Skip to main content

Advertisement

Log in

Non-stationary return levels of CMIP5 multi-model temperature extremes

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The objective of this study is to evaluate to what extent the CMIP5 climate model simulations of the climate of the twentieth century can represent observed warm monthly temperature extremes under a changing environment. The biases and spatial patterns of 2-, 10-, 25-, 50- and 100-year return levels of the annual maxima of monthly mean temperature (hereafter, annual temperature maxima) from CMIP5 simulations are compared with those of Climatic Research Unit (CRU) observational data considered under a non-stationary assumption. The results show that CMIP5 climate models collectively underestimate the mean annual maxima over arid and semi-arid regions that are most subject to severe heat waves and droughts. Furthermore, the results indicate that most climate models tend to underestimate the historical annual temperature maxima over the United States and Greenland, while generally disagreeing in their simulations over cold regions. Return level analysis shows that with respect to the spatial patterns of the annual temperature maxima, there are good agreements between the CRU observations and most CMIP5 simulations. However, the magnitudes of the simulated annual temperature maxima differ substantially across individual models. Discrepancies are generally larger over higher latitudes and cold regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • AghaKouchak A, Easterling D, Hsu K, Schubert S, Sorooshian S (2013) Extremes in a changing climate. Springer, Dordrecht, p 426

    Book  Google Scholar 

  • AghaKouchak A, Mehran A (2013) Extended contingency table: performance metrics for satellite observations and climate model simulations. Water Resour Res 49:7144–7149. doi:10.1002/wrcr.20498

    Article  Google Scholar 

  • Aghakouchak A, Cheng L, Mazdiyasni O, Farahmand A (2014) Global warming and changes in risk of concurrent climate extremes: insights from the 2014 California drought. Geophys Res Lett 41:8847–8852. doi:10.1002/2014GL062308

    Article  Google Scholar 

  • AghaKouchak A, Nasrollahi N (2010) Semi-parametric and parametric inference of extreme value models for rainfall data. Water Resour Manag 24(6):1229–1249

    Article  Google Scholar 

  • Alexander L, Zhang X, Peterson T, Caesar J, Gleason B, Klein Tank A, Haylock M, Collins D, Trewin B, Rahimzadeh F, Tagipour A, Ambenje P, Rupa Kumar K, Revadekar J, Griffiths G (2006) Global observed changes in daily climate extremes of temperature. J Geophys Res 111:D05109

    Google Scholar 

  • Alley RB, Clark PU, Huybrechts P, Joughin I (2005) Ice-sheet and sea-level changes. Science 310(5747):456–460

    Article  Google Scholar 

  • Bonnin G, Martin D, Lin B, Parzybok T, Yekta M, Riley D (2004) Precipitation-frequency Atlas of the United States. NOAA Atlas 14, vol 2. NOAA Natl

  • Cheng L, AghaKouchak A (2014) Nonstationary precipitation intensity-duration-frequency curves for infrastructure design in a changing climate. Sci Rep 4:7093. doi:10.1038/srep07093

    Article  Google Scholar 

  • Cheng L, AghaKouchak A, Gilleland E, Katz R (2014a) Non-stationary extreme value analysis in a changing climate. Clim Change 127(2):353–369. doi:10.1007/s10584-014-1254-5

    Article  Google Scholar 

  • Cheng L, Gilleland E, Heaton MJ, AghaKouchak A (2014b) Empirical Bayes estimation for the conditional extreme value model. Stat 3:391–406. doi:10.1002/sta4.71

    Article  Google Scholar 

  • Clarke RT (2002) Estimating trends in data from the Weibull and a generalized extreme value distribution. Water Resour Res 38(6):1089. doi:10.1029/2001WR000575

    Article  Google Scholar 

  • Coles S (2001) An introduction to statistical modeling of extreme values. Springer, London, p 209

    Book  Google Scholar 

  • Cooley D (2009) Extreme value analysis and the study of climate change. Clim Change 97(1–2):77–83

    Article  Google Scholar 

  • Cooley D (2013) Return periods and return levels under climate change. In: Extremes in a changing climate. Springer, Berlin, pp 97–114. doi:10.1007/978-94-007-4479-0_4

    Chapter  Google Scholar 

  • Cooley D, Nychka D, Naveau P (2007) Bayesian spatial modeling of extreme precipitation return levels. J Am Stat Assoc 102(479):824–840

    Article  Google Scholar 

  • Easterling D, Meehl G, Parmesan C, Changnon S, Karl T, Mearns L (2000) Climate extremes: observations, modeling, and impacts. Science 289(5487):2068–2074

    Article  Google Scholar 

  • Field CB, Barros V, Stocker TF, Qin D, Dokken D, Ebi K, Mastrandrea M, Mach K, Plattner G, Allen S et al (2012) Managing the risks of extreme events and disasters to advance climate change adaptation. Cambridge University Press, Cambridge, p 594

    Book  Google Scholar 

  • Fisher R, Tippett L (1928) Limiting forms of the frequency distribution of the largest or smallest member of a sample. Proc Camb Philos Soc 24:180–190

    Article  Google Scholar 

  • Gelman A, Shirley K (2011) Inference from simulations and monitoring convergence. In: Brooks S, Gelman A, Jones GL, Meng X-L (eds) Handbook of Markov Chain Monte Carlo, 163–174. Chapman and Hall/CRC, London, p 619

    Google Scholar 

  • Gilleland E, Katz RW (2006) Analyzing seasonal to interannual extreme weather and climate variability with the extremes toolkit. In: 18th Conference on climate variability and change, 86th American Meteorological Society (AMS) Annual Meeting, vol 29

  • Gleckler P, Taylor K, Doutriaux C (2008) Performance metrics for climate models. J Geophys Res Atmos 113(D6):D06104

    Article  Google Scholar 

  • Gnedenko B (1943) Sur la distribution limite du terme maximum d’une série aléatoire. Ann Math 44:423–453

    Article  Google Scholar 

  • Granger CW, Inoue T, Morin N (1997) Nonlinear stochastic trends. J Econ 81(1):65–92

    Google Scholar 

  • Gumbel E (1942) On the frequency distribution of extreme values in meteorological data. Bull Am Meteorol Soc 23(3):95

    Google Scholar 

  • Hansen J, Ruedy R, Sato M, Lo K (2010) Global surface temperature change. Rev Geophys 48(4):RG4004

    Article  Google Scholar 

  • Hao Z, AghaKouchak A, Phillips T (2013) Changes in concurrent monthly precipitation and temperature extremes. Environ Res Let 8:034014. doi:10.1088/1748-9326/8/3/034014

    Article  Google Scholar 

  • Hoerling M et al (2013) An interpretation of the origins of the 2012 Central Great Plains drought. Technical report, Assessment Report, National Oceanic and Atmospheric Administration, Drought Task Force

  • IPCC (2007) Climate Change 2007: impacts, adaptation, and vulnerability. In: Parry Martin L, Canziani Osvaldo F, Palutikof Jean P, van der Linden Paul J, Hanson Clair E (eds) Contribution of working group II to the third assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, p 987

  • Karl T, Knight R (1998) Secular trends of precipitation amount, frequency, and intensity in the USA. Bull Am Meteorol Soc 79:231–241

    Article  Google Scholar 

  • Kass RE, Raftery AE (1995) Bayes factors. J Am Stat Assoc 90(430):773–795

    Article  Google Scholar 

  • Katz R (2010) Statistics of extremes in climate change. Clim Change 100(1):71–76

    Article  Google Scholar 

  • Katz R (2013) Statistical methods for nonstationary extremes. In: Extremes in a changing climate. Springer, Berlin, pp 15–37. doi:10.1007/978-94-007-4479-0

  • Katz R, Parlange M, Naveau P (2002) Statistics of extremes in hydrology. Adv Water Resour 25:1287–1304

    Article  Google Scholar 

  • Kendall M (1976) Rank correlation methods, 4th edn. Griffin, London, p 272

    Google Scholar 

  • Kharin V, Zwiers F (2005) Estimating extremes in transient climate change simulations. J Clim 18:1156–1173

    Article  Google Scholar 

  • Kharin V, Zwiers F, Zhang X, Hegerl G (2007) Changes in temperature and precipitation extremes in the IPCC ensemble of global coupled model simulations. J Clim 20(8):1419–1444

    Article  Google Scholar 

  • Kharin V, Zwiers F, Zhang X, Wehner M (2013) Changes in temperature and precipitation extremes in the CMIP5 ensemble. Clim Change 119(2):345–357

    Article  Google Scholar 

  • Kilbourne E (1997) Heat waves and hot environments. In: Noji Eric K (ed) The public health consequences of disasters. Oxford University Press, New York, pp 245–269

    Google Scholar 

  • Kjær K, Khan S, Korsgaard N, Wahr J, Bamber J, Hurkmans R, van den Broeke M, Timm L, Kjeldsen K, Bjørk A et al (2012) Aerial photographs reveal late-20th-century dynamic ice loss in northwestern Greenland. Science 337(6094):569–573

    Article  Google Scholar 

  • Krabill W, Hanna E, Huybrechts P, Abdalati W, Cappelen J, Csatho B, Frederick E, Manizade S, Martin C, Sonntag J et al (2004) Greenland ice sheet: increased coastal thinning. Geophys Res Lett 31(24):L24402

    Article  Google Scholar 

  • Kunkel K (2013) Uncertainties in observed changes in climate extremes. In: Extremes in a changing climate. Springer, Berlin, pp 287–307. doi:10.1007/978-94-007-4479-0_10

    Chapter  Google Scholar 

  • Leadbetter M, Lindgren G, Rootzén H (1983) Extremes and related properties of random sequences and processes. Springer, New York, p 336. doi:10.1007/978-1-4612-5449-2

    Book  Google Scholar 

  • Li Y, Cai W, Campbell E (2005) Statistical modeling of extreme rainfall in southwest western Australia. J Clim 18(6):852–863

    Article  Google Scholar 

  • Liu Z, Mehran A, Phillips T, AghaKouchak A (2014) Seasonal and regional biases in CMIP5 precipitation simulations. Clim Res 60:35–50. doi:10.3354/cr01221

    Article  Google Scholar 

  • Makkonen L (2006) Plotting positions in extreme value analysis. J Appl Meteorol Climatol 45(2):334–340

    Article  Google Scholar 

  • Mann H (1945) Nonparametric tests against trend. Econometrica 13:245–259

    Article  Google Scholar 

  • Mays L (2010) Water resources engineering. Wiley, Hoboken, NJ, p 928

    Google Scholar 

  • McMichael AJ et al (2003) Climate change and human health: risks and responses. World Health Organization, Geneva. ISBN 92 4 156248 X

  • Meehl G, Bony S (2011) Introduction to CMIP5. CLIVAR Exch 16(2):4–5

    Google Scholar 

  • Meehl GA, Karl T, Easterling DR, Changnon S, Pielke R Jr, Changnon D, Evans J, Groisman PY, Knutson TR, Kunkel KE et al (2000) An introduction to trends in extreme weather and climate events: observations, socioeconomic impacts, terrestrial ecological impacts, and model projections. Bull Am Meteorol Soc 81(3):413–416

    Article  Google Scholar 

  • Mehran A, AghaKouchak A, Phillips T (2014) Evaluation of CMIP5 continental precipitation simulations relative to GPCP satellite observations. J Geophys Res 119:1695–1707. doi:10.1002/2013JD021152

    Google Scholar 

  • Milly P, Julio B, Malin F, Robert M, Zbigniew W, Dennis P, Ronald J (2008) Stationarity is dead: whither water management? Science 319(5863):573–574

    Article  Google Scholar 

  • Mitchell T, Jones P (2005) An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int J Climatol 25(6):693–712

    Article  Google Scholar 

  • Morak S, Hegerl GC, Christidis N (2013) Detectable changes in the frequency of temperature extremes. J Clim 26:1561–1574

    Article  Google Scholar 

  • Morton R, Henderson BL (2008) Estimation of nonlinear trends in water quality: an improved approach using generalized additive models. Water Resour Res 44(7):W07420. doi:10.1029/2007WR006191

    Article  Google Scholar 

  • New M, Hulme M, Jones P (2000) Representing twentieth-century space-time climate variability. Part II: development of 1901–96 monthly grids of terrestrial surface climate. J Clim 13(13):2217–2238. doi:10.1175/JCLI-D-11-00678.1

    Article  Google Scholar 

  • NOAA (1980) Impact assessment: U.S. social and economic effects of the great 1980 heat wave and drought. U.S. Department of Commerce, National Oceanic and Atmospheric Administration, Environmental Data and Information Service, Center for Environmental Assessment Services, Washington, DC

  • NOAA (1995) Impact assessment: the July 1995 heat wave natural disaster survey report. U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Weather Service, Silver Spring, MD

  • Papalexiou SM, Koutsoyiannis D (2013) Battle of extreme value distributions: a global survey on extreme daily rainfall. Water Resour Res 49(1):187–201. doi:10.1029/2012WR012557

    Article  Google Scholar 

  • Parey S, Hoang TTH, Dacunha-Castelle D (2010) Different ways to compute temperature return levels in the climate change context. Environmetrics 21(7–8):698–718

    Article  Google Scholar 

  • Phillips PC (2007) Regression with slowly varying regressors and nonlinear trends. Econ Theory 23(04):557–614

    Article  Google Scholar 

  • Phillips T, Gleckler P (2006) Evaluation of continental precipitation in 20th century climate simulations: the utility of multimodel statistics. Water Resour Res 42(3):W03202

    Article  Google Scholar 

  • Reeh N (1989) Parameterization of melt rate and surface temperature on the Greenland ice sheet. Polarforschung 59(3):113–128

    Google Scholar 

  • Reiss R-D, Thomas M (2007) Statistical analysis of extreme values: with applications to insurance, finance, hydrology and other fields. Springer, Berlin, p 512

    Google Scholar 

  • Ren D, Fu R, Leslie L, Chen J, Wilson C, Karoly D (2011) The Greenland ice sheet response to transient climate change. J Clim 24(13):3469–3483

    Article  Google Scholar 

  • Renard B, Garreta V, Lang M (2006) An application of Bayesian analysis and Markov Chain Monte Carlo methods to the estimation of a regional trend in annual maxima. Water Resour Res 42(12). doi:10.1029/2005WR004591

  • Renard B, Sun X, Lang M (2013) Bayesian Methods for non-stationary extreme value analysis. In: Extremes in a changing climate. Springer, Berlin, pp 39–95. doi:10.1007/978-94-007-4479-0_3

    Chapter  Google Scholar 

  • Rootzén H, Katz RW (2013) Design life level: quantifying risk in a changing climate. Water Resour Res 49(9):5964–5972

    Article  Google Scholar 

  • Schlather M (2002) Models for stationary max-stable random fields. Extremes 5(1):33–44

    Article  Google Scholar 

  • Serinaldi F (2014) Dismissing return periods! Stoch Environ Res Risk Assess. doi:10.1007/s00477-014-0916-1

  • Serinaldi F, Kilsby CG (2015) Stationarity is undead: uncertainty dominates the distribution of extremes. Adv Water Resour. doi:10.1016/j.advwatres.2014.12.013

  • Sillmann J, Kharin V, Zhang X, Zwiers F, Bronaugh D (2013) Climate extremes indices in the CMIP5 multimodel ensemble: part 1. Model evaluation in the present climate. J Geophys Res Atmos 118(4):1716–1733

    Article  Google Scholar 

  • Smith R (2001) Extreme value statistics in meteorology and environment. In: Environmental statistics, Chapter 8, pp 300–357. http://www.unc.edu/depts/statistics/postscript/rs/envnotes

  • Solomon S, Qin D, Manning M, Marquis M, Averyt K, Tignor M, LeRoy Miller H, Chen Z (2007) Projections of future climate change. Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the Intergovermental Panel on Climate Change. Cambridge University Press, New York, NY, pp 1007

  • Sorooshian S, AghaKouchak A, Li J (2014) Influence of irrigation on land hydrological processes over California. J Geophys Res Atmos doi:10.1002/2014JD022232

  • Tarroja B et al (2014) Evaluating options for balancing the water–electricity nexus in California: part 1 Securing water availability. Sci Total Environ 497–498:697–710. doi:10.1016/j.scitotenv.2014.06.060

    Article  Google Scholar 

  • Tarroja B et al (2014) Evaluating options for balancing the water-electricity nexus in California: part 2 Greenhouse gas and renewable energy utilization impacts. Sci Total Environ 497–498:711–724. doi:10.1016/j.scitotenv.2014.06.071

    Article  Google Scholar 

  • Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93(4):485–498

    Article  Google Scholar 

  • Tebaldi C, Hayhoe K, Arblaster J, Meehl G (2006) Going to the extremes. Clim Change 79(3):185–211

    Article  Google Scholar 

  • ter Braak CJ (2004) Genetic algorithms and Markov Chain Monte Carlo: differential evolution Markov Chain makes Bayesian computing easy. Biometris, Wageningen UR, The Netherlands

    Google Scholar 

  • ter Braak C (2006) A Markov Chain Monte Carlo version of the genetic algorithm differential evolution: easy Bayesian computing for real parameter spaces. Stat Comput 16(3):239–249

    Article  Google Scholar 

  • Villarini G, Smith JA, Ntelekos AA, Schwarz U (2011) Annual maximum and peaks-over-threshold analyses of daily rainfall accumulations for Austria. J Geophys Res Atmos (1984–2012) 116:D05103. doi:10.1029/2010JD015038

    Google Scholar 

  • Vose R, Wuertz D, Peterson T, Jones P (2005) An intercomparison of trends in surface air temperature analyses at the global, hemispheric, and grid-box scale. Geophys Res Lett 32(18):L18718

    Google Scholar 

  • Vrugt JA, ter Braak C, Diks C, Robinson BA, Hyman JM, Higdon D (2009) Accelerating Markov Chain Monte Carlo simulation by differential evolution with self-adaptive randomized subspace sampling. Int J Nonlinear Sci Numer Simul 10(3):273–290

    Article  Google Scholar 

  • Wehner M (2013) Methods of projecting future changes in extremes. In: Extremes in a changing climate. Springer, Berlin. doi:10.1007/978-94-007-4479-0

  • Winkler RL (1973) A Bayesian approach to nonstationary processes. IIASA

  • Zhang X, Zwiers F (2013) Statistical indices for the diagnosing and detecting changes in extremes. In: Extremes in a changing climate. Springer, Berlin. doi:10.1007/978-94-007-4479-0_1

    Google Scholar 

  • Zwiers FW, Kharin VV (1998) Changes in the extremes of the climate simulated by CCC GCM2 under CO2 doubling. J Clim 11(9):2200–2222

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the three anonymous reviewers for their constructive suggestions which significantly improved the paper. The financial support for authors LC and AA was made available by the Environmental Sciences Division of the Army Research Office Award No. W911NF-14-1-0684. The contributions of author TJP were performed under the auspices of the Lawrence Livermore National Laboratory under Contract DE-AC52-O7NA27344. We acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate-modeling groups for producing and making available their model output. For CMIP, the U.S. Department of Energy’s Program for Climate Model Diagnosis and Intercomparison provides coordinating support and leads the development of software infrastructure in partnership with the Global Organization for Earth System Science Portals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir AghaKouchak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, L., Phillips, T.J. & AghaKouchak, A. Non-stationary return levels of CMIP5 multi-model temperature extremes. Clim Dyn 44, 2947–2963 (2015). https://doi.org/10.1007/s00382-015-2625-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-015-2625-y

Keywords

Navigation