Climate Dynamics

, Volume 46, Issue 3–4, pp 913–927 | Cite as

Cyclone contribution to the Mediterranean Sea water budget

  • E. Flaounas
  • A. Di Luca
  • P. Drobinski
  • S. Mailler
  • T. Arsouze
  • S. Bastin
  • K. Beranger
  • C. Lebeaupin Brossier
Article

Abstract

This paper analyzes the impact of cyclones to the atmospheric components on the Mediterranean Sea Water Budget, namely the cyclones contribution to precipitation and evaporation over the Mediterranean Sea. Three regional simulations were performed with the WRF model for the period 1989–2008. The model was run (1) as a standalone model, (2) coupled with the oceanic model NEMO-MED12 and (3) forced by the smoothed Sea Surface Temperature (SST) fields from the second simulation. Cyclones were tracked in all simulations, and their contribution to the total rainfall and evaporation was quantified. Results show that cyclones are mainly associated with extreme precipitation, representing more than 50 % of the annual rainfall over the Mediterranean Sea. On the other hand, we found that cyclone-induced evaporation represents only a small fraction of the annual total, except in winter, when the most intense Mediterranean cyclones take place. Despite the significant contribution of cyclones to rainfall, our results show that there is a balance between cyclone-induced rainfall and evaporation, suggesting a weak net impact of cyclones on the Mediterranean Sea water budget. The sensitivity of our results with respect to rapid SST changes during the development of cyclones was also investigated. Both rainfall and evaporation are affected in correlation with the SST response to the atmosphere. In fact, air feedbacks to the Mediterranean Sea during the cyclones occurrence were shown to cool down the SST and consequently to reduce rainfall and evaporation at the proximity of cyclone centers.

Keywords

Cyclone Relative Vorticity Freshwater Flux Cyclone Center Mediterranean Cyclone 

Notes

Acknowledgments

This work is a contribution to the HYdrological cycle in the Mediterranean EXperiment (HyMeX) programme through INSU–MISTRALS support and the Mediterranean region COordinated Regional climate Downscaling EXperiment (Med-CORDEX) programme. This research was supported by the IPSL group for regional climate and environmental studies, with granted access to the HPC resources of IDRIS under allocation 2011 (Project Number 010227). EF was supported by the IMPACT2C program (funded by the European Union Seventh Framework Programme, FP7/2007–2013 under the Grant agreement 282746).

References

  1. Akhtar N, Brauch J, Dobler A, Béranger K, Ahrens B (2014) Medicanes in an ocean–atmosphere coupled regional climate model. Nat Hazards Earth Syst Sci Discuss 2:2117–2149. doi: 10.5194/nhessd-2-2117-2014 CrossRefGoogle Scholar
  2. Bartholy J, Pongracz R, Pattantyus-Abraham M (2009) Analyzing the genesis, intensity and tracks of western Mediterranean cyclones. Theor Appl Climatol 96:133–144CrossRefGoogle Scholar
  3. Berthou S, Mailler S, Drobinski P, Arsouze T, Bastin S, Béranger K, Lebeaupin Brossier C (2014) Sensitivity of an intense rain event between an atmosphere-only and an atmosphere-ocean coupled model: 19 september 1996. J R Meteorol Soc, Quart. doi: 10.1002/qj.2355 Google Scholar
  4. Beuvier J, Béranger K, Lebeaupin Brossier C, Somot S, Sevault F, Drillet Y, Bourdallé-Badie R, Ferry N, Levier B, Lyard F (2012) Spreading of the Western Mediterranean Deep Water after winter 2005: time-scales and deep cyclone transport. J Geophys Res 117:C07022. doi: 10.1029/2011JC007679 Google Scholar
  5. Campins J, Genovés A, Picornell MA, Jansà A (2011) Climatology of Mediterranean cyclones using the ERA-40 dataset. Int J Climatol 31:1596–1614. doi: 10.1002/joc.2183 Google Scholar
  6. Catto JL, Pfahl S (2013) The importance of fronts for extreme precipitation. J Geophys Res Atmos 118:10791–10801. doi: 10.1002/jgrd.50852 CrossRefGoogle Scholar
  7. Chaboureau JP, Pantillon F, Lambert D, Richard E, Claud C (2012) Tropical transition of a Mediterranean storm by jet crossing. Q J R Meteorol Soc 138:596–611CrossRefGoogle Scholar
  8. Chambers CRS, Brassington GB, Simmonds I, Walsh K (2014) Precipitation changes due to the introduction of eddy-resolved sea surface temperatures into simulations of the “Pasha Bulker” Australian east coast low of June 2007. Meteorol Atmos Phys 125:1–15CrossRefGoogle Scholar
  9. Claud C, Alhammoud B, Funatsu BM, Lebeuaupin-Brossier C, Chaboureau JP, Béranger K, Drobinski P (2012) A high resolution climatology of precipitation and deep convection over the Mediterranean region from operational satellite microwave data: development and application to the evaluation of model uncertainties. Nat Hazards Earth Syst Sci 12:785–798CrossRefGoogle Scholar
  10. Clough SA, Shephard MW, Mlawer EJ, Delamere JS, Iacono MJ, Cady-Pereira K, Boukabara S, Brown PD (2005) Atmospheric radiative transfer modeling: a summary of the AER codes. J Quant Spectrosc Radiat Transf 91:233–244CrossRefGoogle Scholar
  11. Davolio S, Miglietta MM, Moscatello A, Pacifico F, Buzzi A, Rotunno R (2009) Numerical forecast and analysis of a tropical-like cyclone in the Ionian Sea. Nat Hazards Earth Syst Sci 9:551–562CrossRefGoogle Scholar
  12. Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Hólm EV, Isaksen L, Kållberg P, Köhler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette JJ, Park BK, Peubey C, de Rosnay P, Tavolato C, Thépaut JN, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597. doi: 10.1002/qj.828 CrossRefGoogle Scholar
  13. Di Luca A, Flaounas E, Drobinski P, Lebeaupin Brossier C (2014) The atmospheric component of the Mediterranean Sea water budget in a WRF physics ensemble and observations. Clim Dyn 43:2349–2375. doi: 10.1007/s00382-014-2058-z CrossRefGoogle Scholar
  14. Drobinski P, Bastin S, Guénard V, Caccia JL, Dabas AM, Delville P, Protat A, Reitebuch O, Werner C (2005) Summer mistral at the exit of the Rhône valley. Q J R Meteorol Soc 131:353–375CrossRefGoogle Scholar
  15. Drobinski P, Anav A, Lebeaupin Brossier C, Samson G, Stéfanon M, Bastin S, Baklouti M, Béranger K, Beuvier J, Bourdallé-Badie R, Coquart L, D’Andrea F, De Noblet-Ducoudré N, Diaz F, Dutay JC, Ethe C, Foujols MA, Khvorostyanov D, Madec G, Mancip M, Masson S, Menut L, Palmieri J, Polcher J, Turquety S, Valcke S, Viovy N (2012) Modelling the Regional Coupled Earth system (MORCE): application to process and climate studies in vulnerable regions. Env Model Softw 35:1–18CrossRefGoogle Scholar
  16. Drobinski P, Ducrocq V, Alpert P, Anagnostou E, Béranger K, Borga M, Braud I, Chanzy A, Davolio S, Delrieu G, Estournel C, Filali Boubrahmi N, Font J, Grubisic V, Gualdi S, Homar V, Ivancan-Picek B, Kottmeier C, Kotroni V, Lagouvardos K, Lionello P, Llasat MC, Ludwig W, Lutoff C, Mariotti A, Richard E, Romero R, Rotunno R, Roussot O, Ruin I, Somot S, Taupier-Letage I, Tintore J, Uijlenhoet R, Wernli H (2013) HyMeX: a 10-year multidisciplinary program on the Mediterranean water cycle. Bull Am Meteorol Soc 95:1063–1082. doi: 10.1175/bams-d-12-00242.1 CrossRefGoogle Scholar
  17. Drobinski P, Ducrocq V, Alpert P, Anagnostou E, Branger K, Borga M, Braud I, Chanzy A, Davolio S, Delrieu G, Estournel C, Filali Boubrahmi N, Font J, Grubisic V, Gualdi S, Homar V, Ivancan-Picek B, Kottmeier C, Kotroni V, Lagouvardos K, Lionello P, Llasat M, Ludwig W, Lutoff C, Mariotti A, Richard E, Romero R, Rotunno R, Roussot O, Ruin I, Somot S, Taupier-Letage I, Tintore J, Uijlenhoet R, Wernli H (2014) HyMeX, a 10-year multidisciplinary program on the Mediterranean water cycle. Bull Am Meteorol Soc 95:1063–1082CrossRefGoogle Scholar
  18. Dubois C, Somot S, Calmanti S, Carillo A, Déqué M, Dell’Aquilla A, Elizalde A, Gualdi S, Jacob D, L’Hévéder B (2012) Future projections of the surface heat and water budgets of the Mediterranean Sea in an ensemble of coupled atmosphere–ocean regional climate models. Clim Dyn 39:1859–1884. doi: 10.1007/s00382-011-1261-4.F CrossRefGoogle Scholar
  19. Duffourg F, Ducrocq V (2011) Origin of the moisture feeding the heavy precipitating systems over Southeastern France. Nat Hazards Earth Syst Sci 11:1163–1178. doi: 10.5194/nhess-11-1163-2011 CrossRefGoogle Scholar
  20. Emanuel K (2005) Genesis and maintenance of “mediterranean hurricanes”. Adv Geosci 2:217–220CrossRefGoogle Scholar
  21. Fita L, Romero R, Ramis C (2006) Intercomparison of intense cyclogenesis events over the Mediterranean basin based on baroclinic and diabatic influences. Adv Geosci 7:333–342. doi: 10.5194/adgeo-7-333-2006 CrossRefGoogle Scholar
  22. Fita L, Romero R, Luque A, Emanuel K, Ramis C (2007) Analysis of the environments of seven Mediterranean tropical-like storms using an axisymmetric, nonhydrostatic, cloud resolving model. Nat Hazards Earth Syst Sci 7:41–56CrossRefGoogle Scholar
  23. Flamant C, Richard E, Schär C, Rotunno R, Nance L, Sprenger M, Benoit R (2004) The wake south of the Alps: dynamics and structure of the lee-side flow and secondary potential vorticity banners. Q J R Meteorol Soc 130:1275–1303CrossRefGoogle Scholar
  24. Flaounas E, Drobinski P, Bastin S (2013) Dynamical downscaling of IPSL-CM5 CMIP5 historical simulations over the Mediterranean: benefits on the representation of regional surface winds and cyclogenesis. Clim Dyn 40(9–10):2497–2513CrossRefGoogle Scholar
  25. Flaounas E, Raveh-Rubin S, Wernli H, Drobinski P, Bastin S (2014a) The dynamical structure of intense Mediterranean cyclones. Clim Dyn. doi: 10.1007/s00382-014-2330-21-17 Google Scholar
  26. Flaounas E, Kotroni V, Lagouvardos K, Flaounas I (2014b) CycloTRACK (v1. 0)–tracking winter extratropical cyclones based on relative vorticity: sensitivity to data filtering and other relevant parameters. Geosci Model Dev 7(4):1841–1853CrossRefGoogle Scholar
  27. Flocas HA, Simmonds I, Kouroutzoglou J, Keay K, Hatzaki M, Bricolas V, Asimakopoulos D (2010) On cyclonic tracks over the eastern Mediterranean. J Clim 23(19):5243–5257CrossRefGoogle Scholar
  28. Guénard V, Drobinski P, Caccia JL, Campistron B, Bénech B (2005) An observational study of the mesoscale mistral dynamics. Bound Layer Meteorol 115:263–288CrossRefGoogle Scholar
  29. Guénard V, Drobinski P, Caccia JL, Tedeschi G, Currier P (2006) Dynamics of the MAP IOP-15 severe mistral event: observations and high-resolution numerical simulations. Q J R Meteorol Soc 132:757–778CrossRefGoogle Scholar
  30. Hawcroft MK, Shaffrey LC, Hodges KI, Dacre HF (2012) How much northern hemisphere precipitation is associated with extratropcial cyclones? Geophys Res Lett. doi: 10.1029/2012GL053866 Google Scholar
  31. Homar V, Romero R, Stensrud DJ, Ramis C, Alonso S (2003) Numerical diagnosis of a small, quasi-tropical cyclone over the western Mediterranean: dynamical versus boundary factors. Q J R Meteorol Soc 129:1469–1490. doi: 10.1256/qj.01.91 CrossRefGoogle Scholar
  32. Hong SY, Dudhia J, Chen SH (2004) A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon Weather Rev 132:103–120CrossRefGoogle Scholar
  33. Iordanidou V, Koutroulis AG, Tsanis IK (2014) A probabilistic rain diagnostic model based on cyclone statistical analysis. Adv Meteorol. doi: 10.1155/2014/498020 Google Scholar
  34. Jansà A, Genovés A, Picornell MA, Campins J, Riosalido R, Carretero O (2001) Western Mediterranean cyclones and heavy rain. Part 2: statistical approach. Meteorol Appl 8:43–56CrossRefGoogle Scholar
  35. Kain JS (2004) The Kain-Fritsch convective parameterization: an update. J Appl Meteorol 43:170–181CrossRefGoogle Scholar
  36. Katsafados P, Mavromatidis E, Papadopoulos A, Pytharoulis I (2011) Numerical simulation of a deep Mediterranean storm and its sensitivity on sea surface temperature. Nat Hazards Earth Syst Sci 11:1233–1246. doi: 10.5194/nhess-11-1233-2011 CrossRefGoogle Scholar
  37. Lebeaupin Brossier C, Drobinski P (2009) Numerical high-resolution air-sea coupling over the Gulf of Lions during two tramontane/mistral events. J Geophys Res 114:D10110. doi: 10.1029/2008JD011601 CrossRefGoogle Scholar
  38. Lebeaupin Brossier C, Béranger K, Deltel C, Drobinski P (2011) The Mediterranean Sea response to different space-time resolution atmospheric forcings using perpetual mode sensitivity simulations. Ocean Model 36(1–2):1–25CrossRefGoogle Scholar
  39. Lebeaupin Brossier C, Béranger K, Drobinski P (2012) Sensitivity of the North-Western Mediterranean Coastal and thermohaline circulations as simulated by the 1/12° Resolution Oceanic Model NEMO-MED12 to the space-time resolution of the atmospheric forcing. Ocean Model 43–44:94–107CrossRefGoogle Scholar
  40. Lebeaupin Brossier C, Drobinski P, Béranger K, Bastin S, Orain F (2013) Ocean memory effect on the dynamics of coastal heavy precipitation preceded by a mistral event in the northwestern Mediterranean. Q J R Meteorol Soc 139:1583–1597. doi: 10.1002/qj.2049 CrossRefGoogle Scholar
  41. Lebeaupin Brossier C, Bastin S, Béranger K, Drobinski P (2014) Regional mesoscale air-sea coupling impacts and extreme meteorological events role on the Mediterranean Sea water budget. Clim Dyn. doi: 10.1007/s00382-014-2252-z Google Scholar
  42. Mariotti A (2010) Recent changes in the Mediterranean water cycle: a pathway toward long-term regional hydroclimatic change? J Clim 23:1513–1525CrossRefGoogle Scholar
  43. Mariotti A, Struglia MV, Zeng N, Lau KM (2002) The hydrological cycle in the Mediterranean region and implications for the water budget of the Mediterranean Sea. J Clim 15:1674–1690CrossRefGoogle Scholar
  44. Marshall J, Schott F (1999) Open-ocean convection: observations, theory, and models. Rev Geophys 37(1):1–64CrossRefGoogle Scholar
  45. Miglietta MM, Moscatello A, Conte D, Mannarini G, Lacorata G, Rotunno R (2011) Numerical analysis of a Mediterranean ‘hurricane’ over south-eastern Italy: sensitivity experiments to sea surface temperature. Atmos Res 101:412–426CrossRefGoogle Scholar
  46. Millot C, Taupier-Letage I (2005) Circulation in the Mediterranean Sea. In: 897 the handbook of environmental chemistry, Vol 5K. Springer, pp 29–66, 898. doi: 10.1007/b107143
  47. Nissen KM, Leckebusch GC, Pinto JG, Renggli D, Ulbrich S, Ulbrich U (2010) Cyclones causing wind storms in the Mediterranean: characteristics, trends and links to large-scale patterns. Nat Hazards Earth Syst Sci 10:1379–1391. doi: 10.5194/nhess-10-1379-2010 CrossRefGoogle Scholar
  48. Nissen KM, Leckebusch GC, Pinto JG, Ulbrich U (2013) Mediterranean cyclones and windstorms in a changing climate. Reg Environ Change 14:1873–1890. doi: 10.1007/s10113-012-0400-8 CrossRefGoogle Scholar
  49. Omrani H, Drobinski P, Dubos T (2013) Optimal nudging strategies in regional climate modelling: investigation in a big-brother experiment over the European and Mediterranean regions. Clim Dyn 41:2451–2470CrossRefGoogle Scholar
  50. Papritz L, Pfahl S, Rudeva I, Simmonds I, Sodemann H, Wernli H (2014) The Role of extratropical cyclones and fronts for Southern Ocean freshwater fluxes. J Clim 27:6205–6224. doi: 10.1175/JCLI-D-13-00409.1 CrossRefGoogle Scholar
  51. Pfahl S, Madonna E, Boettcher M, Joos H, Wernli H (2014) Warm conveyor belts in the ERA-interim dataset (1979–2010). Part II: moisture origin and relevance for precipitation. J Clim 27:27–40CrossRefGoogle Scholar
  52. Pytharoulis I, Craig GC, Ballard SP (2000) The hurricane-like Mediterranean cyclone of January 1995. Meteorol Appl 7:261–279CrossRefGoogle Scholar
  53. Romanou A, Tselioudis G, Zerefos CS, Clayson CA, Curry JA, Andersson A (2010) Evaporation-precipitation variability over the Mediterranean and the black seas from satellite and reanalysis estimates. J Clim 23:5268–5287CrossRefGoogle Scholar
  54. Romanski J, Romanou A, Bauer M, Tselioudis G (2012) Atmospheric forcing of the Eastern Mediterranean Transient by midlatitude cyclones. Geophys Res Lett 39:L03703. doi: 10.1029/2011GL050298 CrossRefGoogle Scholar
  55. Ruti PM, Somot S, Giorgi F, Dubois C, Flaounas E, Obermann A, Dell’Aquila A, Pisacane G, Harzallah A, Lombardi E, Ahrens B, Akhtar N, Alias A, Arsouze T, Aznar R, Bastin S, Bartholy J, Béranger K, Beuvier J, Bouffies-Cloché S, Brauch J, Cabos W, Calmanti S, Calvet J-C, Carillo A, Conte D, Coppola E, Dell'Aquila A, Djurdjevic V, Drobinski P, Elizalde-Arellano A, Gaertner M, Galàn P, Gallardo C, Gualdi S, Goncalves M, Jorba O, Jordà G, L'Heveder B, Lebeaupin-Brossier C, Li L, Liguori G, Lionello P, Maciàs D, Nabat P, Onol B, Raikovic B, Ramage K, Sevault F, Sannino G, MV Struglia, Sanna A, Torma C, Vervatis V (2015) MED-CORDEX initiative for Mediterranean climate studies. Bull Am Meteorol Soc (under review)Google Scholar
  56. Salameh T, Drobinski P, Dubos T (2010) The effect of indiscriminate nudging time on the large and small scales in regional climate modelling: application to the Mediterranean basin. Q J R Meteorol Soc 136:170–182CrossRefGoogle Scholar
  57. Sanchez-Gomez E, Somot S, Josey SA, Dubois C, Elguindi N, Déqué M (2011) Evaluation of Mediterranean Sea water and heat budgets simulated by an ensemble of high resolution regional climate models. Clim Dyn 37(9–10):2067–2086CrossRefGoogle Scholar
  58. Sanna A, Lionello P, Gualdi S (2013) Coupled atmosphere ocean climate model simulations in the Mediterranean region: effect of a high-resolution marine model on cyclones and precipitation. Nat Hazards Earth Syst Sci 13:1567–1577. doi: 10.5194/nhess-13-1567-2013 CrossRefGoogle Scholar
  59. Simmonds I (2000) Size changes over the life of sea level cyclones in the NCEP reanalysis. Mon Weather Rev 128:4118–4125CrossRefGoogle Scholar
  60. Skamarock WC, Klemp JB (2008) A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J Comput Phys 227:3465–3485CrossRefGoogle Scholar
  61. Sodemann H, Stohl A (2013) Moisture origin and meridional transport in atmospheric rivers and their association with multiple cyclones. Mon Weather Rev 141:2850–2868CrossRefGoogle Scholar
  62. Tous M, Romero R, Ramis C (2013) Surface heat fluxes influence on medicane trajectories and intensification. Atmos Res 123:400–411CrossRefGoogle Scholar
  63. Trigo IF, Davies TD, Bigg GR (2000) Decline in Mediterranean rainfall caused by weakening of Mediterranean cyclones. Geophys Res Lett 27:2913–2916CrossRefGoogle Scholar
  64. Trigo IF, Bigg GR, Davies TD (2002) Climatology of cyclogenesis mechanisms in the Mediterranean. Mon Weather Rev 130:549–569CrossRefGoogle Scholar
  65. Vianna ML, Menezes VV, Pezza AB, Simmonds I (2010) Interactions between Hurricane Catarina (2004) and warm core rings in the South Atlantic Ocean. J Geophys Res 115:C07002. doi: 10.1029/2009JC005974 Google Scholar
  66. Winschall A, Pfahl S, Sodemann H, Wernli H (2012) Impact of North Atlantic evaporation hot spots on southern Alpine heavy precipitation events. Q J R Meteorol Soc 138:1245–1258. doi: 10.1002/qj.987 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • E. Flaounas
    • 1
  • A. Di Luca
    • 1
    • 6
  • P. Drobinski
    • 1
  • S. Mailler
    • 1
  • T. Arsouze
    • 2
  • S. Bastin
    • 3
  • K. Beranger
    • 2
    • 4
  • C. Lebeaupin Brossier
    • 5
  1. 1.Institut Pierre Simon Laplace/LaBoratoire de Météorologie DynamiqueCNRS and Ecole PolytechniquePalaiseauFrance
  2. 2.ENSTA-ParisTechPalaiseauFrance
  3. 3.Institut Pierre Simon Laplace/LaBoratoire Atmosphères, Milieux, Observations SpatialesCNRS and Université Versailles Saint QuentinGuyancourtFrance
  4. 4.Laboratoire d’Etude des Transferts en HydrologieUniversité Grenoble-AlpesGrenobleFrance
  5. 5.CNRM-GAME, Météo-France and CNRSToulouseFrance
  6. 6.Climate Change Research CentreUniversity of New South WalesSydneyAustralia

Personalised recommendations