Advertisement

Climate Dynamics

, Volume 46, Issue 3–4, pp 711–727 | Cite as

A study of the impact of parameter optimization on ENSO predictability with an intermediate coupled model

  • Xinrong Wu
  • Guijun Han
  • Shaoqing Zhang
  • Zhengyu Liu
Article

Abstract

Model error is a major obstacle for enhancing the forecast skill of El Niño-Southern Oscillation (ENSO). Among three kinds of model error sources—dynamical core misfitting, physical scheme approximation and model parameter errors, the model parameter errors are treatable by observations. Based on the Zebiak-Cane model, an ensemble coupled data assimilation system is established to study the impact of parameter optimization (PO) on ENSO predictions within a biased twin experiment framework. “Observations” of sea surface temperature anomalies drawn from the “truth” model are assimilated into a biased prediction model in which model parameters are erroneously set from the “truth” values. The degree by which the assimilation and prediction with or without PO recover the “truth” is a measure of the impact of PO. Results show that PO improves ENSO predictability—enhancing the seasonal-interannual forecast skill by about 18 %, extending the valid lead time up to 33 % and ameliorating the spring predictability barrier. Although derived from idealized twin experiments, results here provide some insights when a coupled general circulation model is initialized from the observing system.

Keywords

Parameter optimization Ensemble Kalman filter ENSO predictability Intermediate coupled model 

Abbreviations

EAKF

Ensemble adjustment Kalman filter

SE

State estimation

PO

Parameter optimization

CTL

Model control run

ENSO

El Niño-Southern Oscillation

Notes

Acknowledgments

The authors thank Mark A. Cane and Donna Lee for providing the codes of the ZC model. This research is co-sponsored by grants from the National Natural Science Foundation (41306006, 41376015, 41376013, 41176003, and 41206178), the National Basic Research Program (2013CB430304), the National High-Tech R&D Program (2013AA09A505), and the Global Change and Air–Sea Interaction (GASI-01-01-12) of China.

References

  1. Aksoy A, Zhang F, Nielsen-Gammon JW (2006) Ensemble-based simultaneous state and parameter estimation in a two-dimensional sea-breeze model. Mon Weather Rev 134:2951–2970CrossRefGoogle Scholar
  2. Anderson JL, Anderson SL (1999) A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts. Mon Weather Rev 127:2741–2758CrossRefGoogle Scholar
  3. Anderson JL (2001) An ensemble adjustment Kalman filter for data assimilation. Mon Weather Rev 129:2884–2903CrossRefGoogle Scholar
  4. Anderson JL (2003) A local least squares framework for ensemble filtering. Mon Weather Rev 131:634–642CrossRefGoogle Scholar
  5. Anderson JL (2007) Exploring the need for localization in ensemble data assimilation using a hierarchical ensemble filter. Phys D 230:99–111CrossRefGoogle Scholar
  6. Anderson JL (2008) Spatially and temporally varying adaptive covariance inflation for ensemble filters. Tellus 61A:72–83Google Scholar
  7. Annan JD, Hargreaves JC, Edwards NR, Marsh R (2004) Parameter estimation in an intermediate complexity earth system model using an ensemble Kalman filter. Ocean Model 8:135–154CrossRefGoogle Scholar
  8. Banks HT (1992a) Control and estimation in distributed parameter systems. In: Frontiers in applied mathematics, vol 11. SIAM, 3600 University City Science Center, Philadelphia, Pennsylvania pp 19104–2688Google Scholar
  9. Banks HT (1992b) Computational issues in parameter estimation and feedback control problems for partial differential equation systems. Phys D 60:226–238CrossRefGoogle Scholar
  10. Bishop CH, Hodyss D (2007) Flow adaptive moderation of spurious ensemble correlations and its use in ensemble-based data assimilation. Q J R Meteor Soc 133:2029–2044CrossRefGoogle Scholar
  11. Cane MA, Zebiak SE, Dolan SC (1986) Experimental forecasts of El Niño. Nature 321:827–832CrossRefGoogle Scholar
  12. Chen D, Cane MA (2008) El Niño prediction and predictability. J Comput Phys 227:3625–3640CrossRefGoogle Scholar
  13. Chen D, Zebiak SE, Busalacchi AJ, Cane MA (1995) An improved procedure for El Niño forecasting: implications for predictability. Science 269:1699–1702CrossRefGoogle Scholar
  14. Chen D, Cane MA, Zebiak SE, Canizares R, Kaplan A (2000) Bias correction of an ocean-atmosphere coupled model. Geophys Res Lett 27:2585–2588CrossRefGoogle Scholar
  15. Chen D, Cane MA, Kaplan A, Zebiak SE, Huang D (2004) Predictability of El Niño over the past 148 years. Nature 428:733–736CrossRefGoogle Scholar
  16. Cheng Y, Tang Y, Jackson P, Chen D, Deng Z (2010) Ensemble construction and verification of the probabilistic ENSO prediction in the LDEO5 model. J Clim 23:5476–5497CrossRefGoogle Scholar
  17. Evensen G (1994) Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J Geophys Res 99:143–162CrossRefGoogle Scholar
  18. Evensen G (2007) Data assimilation the ensemble Kalman filter. Springe Press, Berlin, p 187Google Scholar
  19. Gaspari G, Cohn SE (1999) Construction of correlation functions in two and three dimensions. Q J R Meteor Soc 125:723–757CrossRefGoogle Scholar
  20. Gill AE (1980) Some simple solutions for heat-induced tropical circulation. Q J R Meteor Soc 106:447–462CrossRefGoogle Scholar
  21. Hamill TM, Whitaker JS, Snyder C (2001) Distance-dependent filtering of background error covariance estimates in an ensemble Kalman filter. Mon Weather Rev 129:2776–2790CrossRefGoogle Scholar
  22. Han G, Wu X, Zhang S, Liu Z, Li W (2013) Error covariance estimation for coupled data assimilation using a Lorenz atmosphere and a simple pycnocline ocean model. J Clim 26:10218–10231CrossRefGoogle Scholar
  23. Hansen J, Penland C (2007) On stochastic parameter estimation using data assimilation. Phys D 230:88–98CrossRefGoogle Scholar
  24. Houtekamer PL, Mitchell HK, Deng X (2009) Model error representation in an operational ensemble Kalman filter. Mon Weather Rev 137:2126–2143CrossRefGoogle Scholar
  25. Jazwinski AH (1970) Stochastic processes and filtering theory. Academic Press, New YorkGoogle Scholar
  26. Jin EK, Kinter JLIII, Wang B, co-authors (2008) Current status of ENSO prediction skill in coupled ocean-atmosphere models. Clim Dyn 31:647–664CrossRefGoogle Scholar
  27. Kaplan A, Cane MA, Kushnir Y, Clement AC, Blumenthal MB, Rajagopalan B (1998) Analyses of global sea surface temperature 1856-1991. J Geophys Res 103:18567–18589CrossRefGoogle Scholar
  28. Karspeck AR, Anderson JL (2007) Experimental implementation of an ensemble adjustment filter for an intermediate ENSO model. J Clim 20:4638–4658CrossRefGoogle Scholar
  29. Karspeck AR, Kaplan A, Cane MA (2006) Predictability loss in an intermediate ENSO model due to initial error and atmospheric noise. J Clim 19:3572–3588CrossRefGoogle Scholar
  30. Keenlyside N, Latif M, Botzet M, Jungclaus J, Schulzweida U (2005) A coupled method for initializing El Niño Southern Oscillation forecasts using sea surface temperature. Tellus 57A:340–356CrossRefGoogle Scholar
  31. Kondrashov D, Sun C, Ghil M (2008) Data assimilation for a coupled ocean–atmosphere model, part II: parameter estimation. Mon Weather Rev 136:5062–5076CrossRefGoogle Scholar
  32. Laine M, Solonen A, Haario H, Järvinen H (2012) Ensemble prediction and parameter estimation system: the method. Q J R Meteorol Soc 138:289–297CrossRefGoogle Scholar
  33. Lee T, Boulanger JP, Foo A, Fu LL, Giering R (2000) Data assimilation by an intermediate coupled ocean-atmosphere model: application to the 1997–1998 El Niño. J Geophys Res 105:26063–26087CrossRefGoogle Scholar
  34. Liu Y, Liu Z, Zhang S, Rong X, Jacob R, Wu S, Lu F (2014) Ensemble-based parameter estimation in a coupled GCM using the adaptive spatial average method. J Clim. doi: 10.1175/JCLI-D-13-00091.1 Google Scholar
  35. Mann M, Cane MA, Zebiak SE, Clement A (2005) Volcanic and solar forcing of El Niño over the past 1000 years. J Clim 18:447–456CrossRefGoogle Scholar
  36. McPhaden MJ, Zebiak SE, Glantz MH (2006) ENSO as an integrating concept in earth science. Science 314:1740–1745CrossRefGoogle Scholar
  37. Miyoshi T (2011) The Gaussian approach to adaptive covariance inflation and its implementation with the local ensemble transform Kalman filter. Mon Weather Rev 139:1519–1535CrossRefGoogle Scholar
  38. Moore AM, Kleeman R (1999) Stochastic forcing of ENSO by the intraseasonal oscillation. J Clim 12:1199–1220CrossRefGoogle Scholar
  39. Peng SQ, Li YN, Xie L (2013) Adjusting the wind stress drag coefficient in storm surge forecasting using an adjoint technique. J Atmos Ocean Technol 30:590–608CrossRefGoogle Scholar
  40. Penland C, Magorian T (1993) Prediction of Niño 3 sea surface temperatures using linear inverse modeling. J Clim 6:1067–1076CrossRefGoogle Scholar
  41. Stainforth DA, Aina T, Christensen C, co-authors (2005) Uncertainty in predictions of the climate response to rising levels of greenhouse gases. Nature 433:403–406CrossRefGoogle Scholar
  42. Sugiura N, co-authors (2008) Development of a four-dimensional variational coupled data assimilation system for enhanced analysis and prediction of seasonal to interannual climate variations. J Geophys Res 2008(133):C10017. doi: 10.1029/2008JC004741 CrossRefGoogle Scholar
  43. Vossepoel FC, Van Leeuwen PJ (2007) Parameter estimation using a particle method: inferring mixing coefficients from sea level observations. Mon Weather Rev 135:1006–1020CrossRefGoogle Scholar
  44. Whitaker JS, Hamill TM, Wei X, Song Y, Toth Z (2008) Ensemble data assimilation with the NCEP global forecast system. Mon Weather Rev 136:463–482CrossRefGoogle Scholar
  45. Wu X, Zhang S, Liu Z, Rosati A, Delworth T, Liu Y (2012) Impact of geographic dependent parameter optimization on climate estimation and prediction: simulation with an intermediate coupled model. Mon Weather Rev 140:3956–3971CrossRefGoogle Scholar
  46. Wu X, Zhang S, Liu Z, Rosati A, Delworth T (2013) A study of impact of the geographic dependent of observing system on parameter estimation with an intermediate coupled model. Clim Dyn 40(7–8):1789–1798CrossRefGoogle Scholar
  47. Wu X, Li W, Han G, Zhang S, Wang X (2014) A compensatory approach of the fixed localization in EnKF. Mon Wea Rev 142:3713–3733CrossRefGoogle Scholar
  48. Yu Y, Mu M, Duan W (2012) Does model parameter error cause a significant “Spring Predictability Barrier” for El Niño events in the Zebiak-Cane model? J Clim 25:1263–1277CrossRefGoogle Scholar
  49. Zebiak SE, Cane MA (1987) A model El Niño-Southern Oscillation. Mon Weather Rev 115:2262–2278CrossRefGoogle Scholar
  50. Zhang S, Anderson JL (2003) Impact of spatially and temporally varying estimates of error covariance on assimilation in a simple atmospheric model. Tellus 55A:126–147CrossRefGoogle Scholar
  51. Zhang S, Harrison MJ, Wittenberg AT, Rosati A, Anderson JL, Balaji V (2005) Initialization of an ENSO forecast system using a parallelized ensemble filter. Mon Weather Rev 133:3176–3201CrossRefGoogle Scholar
  52. Zhang S, Harrison JJ, Rosati A, Wittenberg AT (2007) System design and evaluation of coupled ensemble data assimilation for global oceanic climate studies. Mon Weather Rev 135:3541–3564CrossRefGoogle Scholar
  53. Zhang S, Liu Z, Rosati A, Delworth T (2012) A study of enhancive parameter correction with coupled data assimilation for climate estimation and prediction using a simple coupled model. Tellus 63A:10963. doi: 10.3402/tellusa.v63i0.10963 Google Scholar
  54. Zhu Y, Navon IM (1999) Impact of parameter estimation on the performance of the FSU global spectral model using its full physics adjoint. Mon Weather Rev 127:1497–1517CrossRefGoogle Scholar
  55. Zupanski D, Zupanski M (2006) Model error estimation employing an ensemble data assimilation approach. Mon Weather Rev 134:1337–1354CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Xinrong Wu
    • 1
  • Guijun Han
    • 1
  • Shaoqing Zhang
    • 2
  • Zhengyu Liu
    • 3
    • 4
  1. 1.Key Laboratory of Marine Environmental Information Technology, State Oceanic AdministrationNational Marine Data and Information ServiceTianjinPeople’s Republic of China
  2. 2.GFDL/NOAAPrinceton UniversityPrincetonUSA
  3. 3.Center for Climate Research and Department of Atmospheric and Oceanic SciencesUniversity of Wisconsin-MadisonMadisonUSA
  4. 4.Lab. of Ocean-Atmos. StudiesPeking UniversityBeijingPeople’s Republic of China

Personalised recommendations