Climate Dynamics

, Volume 46, Issue 1–2, pp 585–599 | Cite as

Interannual modulation of subtropical Atlantic boreal summer dust variability by ENSO

  • Michael J. DeFlorio
  • Ian D. Goodwin
  • Daniel R. Cayan
  • Arthur J. Miller
  • Steven J. Ghan
  • David W. Pierce
  • Lynn M. Russell
  • Balwinder Singh


Dust variability in the climate system has been studied for several decades, yet there remains an incomplete understanding of the dynamical mechanisms controlling interannual and decadal variations in dust transport. The sparseness of multi-year observational datasets has limited our understanding of the relationship between climate variations and atmospheric dust. We use available in situ and satellite observations of dust and a century-length fully coupled Community Earth System Model (CESM) simulation to show that the El Niño-Southern Oscillation (ENSO) exerts a control on North African dust transport during boreal summer. In CESM, this relationship is stronger over the dusty tropical North Atlantic than near Barbados, one of the few sites having a multi-decadal observed record. During strong La Niña summers in CESM, a statistically significant increase in lower tropospheric easterly wind is associated with an increase in North African dust transport over the Atlantic. Barbados dust and Pacific SST variability are only weakly correlated in both observations and CESM, suggesting that other processes are controlling the cross-basin variability of dust. We also use our CESM simulation to show that the relationship between downstream North African dust transport and ENSO fluctuates on multidecadal timescales and is associated with a phase shift in the North Atlantic Oscillation. Our findings indicate that existing observations of dust over the tropical North Atlantic are not extensive enough to completely describe the variability of dust and dust transport, and demonstrate the importance of global models to supplement and interpret observational records.


Dust ENSO NAO CESM Teleconnections Decadal variability 

Supplementary material

382_2015_2600_MOESM1_ESM.docx (2.1 mb)
Supplementary material 1 (DOCX 2158 kb)


  1. Barnston AG, Tippett MK, L’Heureaux ML et al (2011) Skill of real-time seasonal ENSO model predictions during 2002–2011—Is our capability increasing? Science and Technology Infusion Climate Bulletin, NOAA’s National Weather Service.
  2. Chiapello I, Moulin C, Prospero JM (2005) Understanding the long-term variability of African dust transport across the Atlantic as recorded in both Barbados surface concentrations and large-scale total ozone mapping spectrometer (TOMS) optical thickness. J Geophys Res 110:D18S10. doi:10.1029/2004JD005132 Google Scholar
  3. DeFlorio MJ, Ghan SJ, Singh B et al (2014) Semidirect dynamical and radiative effect of North African dust transport on lower tropospheric clouds over the subtropical North Atlantic in CESM 1.0. J Geophys Res 119:8284–8303. doi:10.1002/2013JD020997 Google Scholar
  4. Deser C, Phillips AS, Tomas RA et al (2012) ENSO and Pacific decadal variability in community climate system model version 4. J Clim 25:2622–2651. doi:10.1175/JCLI-D-11-00301.1 CrossRefGoogle Scholar
  5. Doherty OM, Evan AT (2014) Identification of a new dust-stratocumulus indirect effect over the tropical North Atlantic. Geophys Res Lett 41:6935–6942. doi:10.1002/2014GL060987 CrossRefGoogle Scholar
  6. Doherty OM, Riemer N, Hameed S (2008) Saharan mineral dust transport into the Caribbean: observed atmospheric controls and trends. J Geophys Res 113:D07211. doi:10.1029/2007/JD009171 Google Scholar
  7. Doherty OM, Riemer N, Hameed S (2012) Control of Saharan mineral dust transport to Barbados in winter by the Intertropical Convergence Zone over West Africa. J Geophys Res 117:D19117. doi:10.1029/2012JD017767 Google Scholar
  8. Doherty OM, Riemer N, Hameed S (2014) Role of the convergence zone over West Africa in controlling Saharan mineral dust load and transport in the boreal summer. Tellus B. doi:10.3402/tellusb.v66.23191 Google Scholar
  9. Engelstaedter S, Washington R, Mahowald NM (2009) Impact of changes in atmospheric conditions in modulating summer dust concentration at Barbados: a back-trajectory analysis. J Geophys Res Atmos 114(D17):D17111CrossRefGoogle Scholar
  10. Erickson DJ III, Hernandez J, Ginoux P et al (2003) Atmospheric iron delivery and surface ocean biological activity in the Southern Ocean and Patagonian region. Geophys Res Lett 30(12):1609. doi:10.1029/2003GL017241 CrossRefGoogle Scholar
  11. Evan AT, Mukhopadhyay S (2010) African dust over the northern tropical Atlantic: 1955–2008. J Appl Meteorol Climatol 49:2213–2229. doi:10.1175/2010JAMC2485.1 CrossRefGoogle Scholar
  12. Evan AT, Dunion J, Foley J et al (2006a) New evidence for a relationship between Atlantic tropical cyclone activity and African dust outbreaks. Geophys Res Lett 33:L19813. doi:10.1029/2006GL026408 CrossRefGoogle Scholar
  13. Evan AT, Heidinger AK, Pavolonis MJ (2006b) Development of a new over-water advanced very high resolution radiometer dust detection algorithm. Int J Remote Sens 27(18):3903–3924CrossRefGoogle Scholar
  14. Evan AT, Heidinger AK, Knippertz P (2006c) Analysis of winter dust activity off the coast of West Africa using a new 24-year over-water advanced very high resolution radiometer satellite dust climatology. J Geophys Res 111:D12210. doi:10.1029/2005JD006336 CrossRefGoogle Scholar
  15. Evan AT, Foltz GR, Zhang D et al (2011) Influence of African dust on ocean–atmosphere variability in the tropical Atlantic. Nat Geosci 4:762–765CrossRefGoogle Scholar
  16. Evan AT, Flamant C, Fielder S et al (2014) An analysis of aeolian dust in climate models. Geophys Res Lett. doi:10.1002/2014GL060545 Google Scholar
  17. Ghan SJ, Schwartz SE (2007) Aerosol properties and processes: a path from field and laboratory measurements to global climate models. Bull Am Meteorol Soc 88:1059–1083. doi:10.1175/BAMS-88-7-1059 CrossRefGoogle Scholar
  18. Ginoux P, Chin M, Tegen I et al (2001) Sources and distributions of dust aerosols simulated with the GOCART model. J Geophys Res 106:20255–20273CrossRefGoogle Scholar
  19. Ginoux P, Prospero JM, Torres O et al (2004) Long-term simulation of global dust distribution with the GOCART model: correlation with North Atlantic Oscillation. Environ Model Softw. doi:10.1016/S1364-8152(03)00114-2 Google Scholar
  20. Ginoux P, Prospero JM, Gill TE et al (2012) Global-scale attribution of anthropogenic and natural dust sources and their emission rates based on MODIS deep blue aerosol products. Rev Geophys 50:RG3005. doi:10.1029/2012RG000388 CrossRefGoogle Scholar
  21. Heintzenberg J (2009) The SAMUM-1 experiment over Southern Morocco: overview and introduction. Tellus B 61:2–11. doi:10.1111/j.1600-0889.2008.00403.x CrossRefGoogle Scholar
  22. Hurrell JW, Holland MM, Gent PR et al (2013) The community earth system model: a framework for collaborative research. Bull Am Meteorol Soc 94:1339–1360. doi:10.1175/BAMS-D-12-00121.1 CrossRefGoogle Scholar
  23. Koffi B, Schulz M, Bréon F-M et al (2012) Application of the CALIOP layer product to evaluate the vertical distribution of aerosols estimated by global models: AeroCom phase I results. J Geophys Res 117:D10201. doi:10.1029/2011JD016858 CrossRefGoogle Scholar
  24. Kok J (2011) A scaling theory for the size distribution of emitted dust aerosols suggests climate models underestimate the size of the global dust cycle. Proc Natl Acad Sci USA 108:1016–1021. doi:10.1029/2011JD016858 CrossRefGoogle Scholar
  25. Kok JF, Mahowald NM, Fratini G et al (2014a) An improved dust emission model—Part 1: model description and comparison against measurements. Atmos Chem Phys 14:13023–13041. doi:10.5194/acp-14-13023-2014 CrossRefGoogle Scholar
  26. Kok JF, Albani S, Mahowald NM et al (2014b) An improved dust emission model—Part 2: evaluation in the Community Earth System Model, with implications for the use of dust source functions. Atmos Chem Phys 14:13043–13061. doi:10.5194/acp-14-13043-2014 CrossRefGoogle Scholar
  27. Liu X, Easter RC, Ghan SJ et al (2012) Toward a minimal representation of aerosols in climate models: description and evaluation in the Community Atmosphere Model CAM5. Geosci Model Dev 5:709–739. doi:10.5194/gmd-5-709-2012 CrossRefGoogle Scholar
  28. Mahowald NM, Luo C, del Corral J et al (2003) Interannual variability in atmospheric mineral aerosols from a 22-year model simulation and observational data. J Geophys Res 108:D12. doi:10.1029/2002JD002821 Google Scholar
  29. Mahowald NM, Kloster S, Engelstaedter S et al (2010) Observed 20th century desert dust variability: impact on climate and biogeochemistry. Atmos Chem Phys 10:10875–10893. doi:10.5194/acp-10-10875-2010 CrossRefGoogle Scholar
  30. Mantua NJ, Hare SR, Zhang Y et al (1997) A Pacific interdecadal climate oscillation with impacts on salmon production. Bull Am Meteorol Soc 78:1069–1079CrossRefGoogle Scholar
  31. Marticorena B, Bergametti G (1995) Modeling the atmospheric dust cycle: 1. Design of a soil-derived dust emission scheme. J Geophys Res 100(D8):16415–16430. doi:10.1029/95JD00690 CrossRefGoogle Scholar
  32. Moulin C, Lambert CE, Dulac F et al (1997) Control of atmospheric export of dust from North Africa by the North Atlantic Oscillation. Nature 287:691–694Google Scholar
  33. Percival DB, Walden AT (1993) Spectral analysis for physical applications: multitaper and conventional univariate techniques. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  34. Prospero JM (1999) Long-range transport of mineral dust in the global atmosphere: impact of African dust on the environment of the southeastern United States. Proc Natl Acad Sci USA 96:3396–4303CrossRefGoogle Scholar
  35. Prospero JM, Lamb JP (2003) African droughts and dust transport to the Caribbean: climate change and implications. Science 302:1024–1027CrossRefGoogle Scholar
  36. Prospero JM, Mayol-Bracero OL (2013) Understanding the transport and impact of African dust on the Caribbean basin. Bull Am Meteorol Soc 94:1329–1337. doi:10.1175/BAMS-D-12-00142.1 CrossRefGoogle Scholar
  37. Prospero JM, Nees RT (1977) Dust concentration in the atmosphere of the equatorial North Atlantic: possible relationship to the Sahelian drought. Science 196:1196–1198CrossRefGoogle Scholar
  38. Riemer N, Doherty OM, Hameed S (2006) On the variability of African dust transport across the Atlantic. Geophys Res Lett 113:D07211–D07211Google Scholar
  39. Wang C, Dong S, Evan AT et al (2012) Multidecadal covariability of North Atlantic sea surface temperature, African dust, Sahel rainfall, and Atlantic hurricanes. J Clim 25(15):5404–5415CrossRefGoogle Scholar
  40. Washington R, Todd MC, Engelstaedter S et al (2006) Dust and the low-level circulation over the Bodélé Depression, Chad: observations from BoDEx 2005. J Geophys Res Atmos 111:3201CrossRefGoogle Scholar
  41. Wolter K, Timlin MS (1998) Measuring the strength of ENSO events: How does 1997/98 rank? Weather 53:315–324. doi:10.1002/j.1477-8696.1998.tb06408.x CrossRefGoogle Scholar
  42. Zender CS, Bian H, Newman DL (2003) The mineral dust entrainment and deposition (DEAD) model: description and 1990s dust climatology. J Geophys Res 108(D14):4416. doi:10.1029/2002JD002775 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Michael J. DeFlorio
    • 1
  • Ian D. Goodwin
    • 2
  • Daniel R. Cayan
    • 1
    • 3
  • Arthur J. Miller
    • 1
  • Steven J. Ghan
    • 4
  • David W. Pierce
    • 1
  • Lynn M. Russell
    • 1
  • Balwinder Singh
    • 4
  1. 1.Climate, Atmospheric Science, and Physical Oceanography, Scripps Institution of OceanographyUniversity of California, San DiegoLa JollaUSA
  2. 2.Department of Environmental SciencesMacquarie UniversityNorth RydeAustralia
  3. 3.U.S. Geological SurveyLa JollaUSA
  4. 4.Pacific Northwest National LaboratoryRichlandUSA

Personalised recommendations