Climate Dynamics

, Volume 46, Issue 1–2, pp 263–271 | Cite as

Long-term persistence enhances uncertainty about anthropogenic warming of Antarctica

  • Josef Ludescher
  • Armin Bunde
  • Christian L. E. Franzke
  • Hans Joachim Schellnhuber
Article

Abstract

Previous estimates of the strength and the uncertainty of the observed Antarctic temperature trends assumed that the natural annual temperature fluctuations can be represented by an auto-regressive process of first order [AR(1)]. Here we find that this hypothesis is inadequate. We consider the longest observational temperature records in Antarctica and show that their variability is better represented by a long-term persistent process that has a propensity of large and enduring natural excursions from the mean. As a consequence, the statistical significance of the recent (presumably anthropogenic) Antarctic warming trend is lower than hitherto reported, while the uncertainty about its magnitude is enhanced. Indeed, all records except for one (Faraday/Vernadsky) fail to show a significant trend. When increasing the signal-to-noise ratio by considering appropriate averages of the local temperature series, we find that the warming trend is still not significant in East Antarctica and the Antarctic Peninsula. In West Antarctica, however, the significance of the trend is above \(97.4 \,\%\), and its magnitude is between 0.08 and 0.96 °C per decade. We argue that the persistent temperature fluctuations not only have a larger impact on regional warming uncertainties than previously thought but also may provide a potential mechanism for understanding the transient weakening (“hiatus”) of the regional and global temperature trends.

Keywords

Trend significance Long-term persistence Antarctic temperatures 

Supplementary material

382_2015_2582_MOESM1_ESM.pdf (256 kb)
Supplementary material 1 (pdf 257 KB)

References

  1. Agudelo PA, Curry JA (2004) Analysis of spatial distribution in tropospheric temperature trends. Geophys Res Lett 31:L22207CrossRefGoogle Scholar
  2. Bamber JL, Riva REM, Vermeesen A, LeBrocq AM (2009) Reassessment of the potential sea-level rise from a collapse of the West Antarctic ice sheet. Science 324:901–903CrossRefGoogle Scholar
  3. Blender R, Fraedrich K (2003) Long time memory in global warming simulations. Geophys Res Lett 30:1769CrossRefGoogle Scholar
  4. Bloomfield P, Nychka D (1992) Climate spectra and detecting climate change. Clim Change 21:275–287CrossRefGoogle Scholar
  5. Bromwich DH et al (2012) Central West Antarctica among the most rapidly warming regions on Earth. Nat Geosci 6:139–145CrossRefGoogle Scholar
  6. Bromwich DH, Nicolas JP (2014) How significant is West Antarctic warming? Reply Nat Geosci 7:247CrossRefGoogle Scholar
  7. Bunde A, Büntgen U, Ludescher J, Luterbacher J, Storch H (2013) Is there memory in precipitation? Nat Clim Change 3:174–175CrossRefGoogle Scholar
  8. Bunde A, Ludescher J, Franzke C, Büntgen U (2014) How significant is West Antarctic warming? Nat Geosci 7:246–247CrossRefGoogle Scholar
  9. Cazenave A, Llovel W (2010) Contemporary sea level rise. Annu Rev Mar Sci 2:145–173CrossRefGoogle Scholar
  10. Cowtan K, Way RG (2014) Coverage bias in the HadCRUT4 temperature series and its impact on recent temperature trends. Q J R Meteorol Soc. doi:10.1002/qj.2297
  11. Depoorter M et al (2013) Calving fluxes and basal melt rates of Antarctic ice shelves. Nature 502(7469):89–92CrossRefGoogle Scholar
  12. Eichner J, Koscielny-Bunde E, Bunde A, Havlin S, Schellnhuber HJ (2003) Power-law persistence and trends in the atmosphere: a detailed study of long temperature records. Phys Rev E 68:046133CrossRefGoogle Scholar
  13. Farman J, Gardiner B, Shanklin J (1985) Large losses of total ozone in Antarctica reveal seasonal ClOx/NOx interaction. Nature 315(6016):207–210CrossRefGoogle Scholar
  14. Fatichi S, Barbosa SM, Caporali E, Silva ME (2009) Deterministic versus stochastic trends: detection and challenges. J Geophys Res 114:D18121CrossRefGoogle Scholar
  15. Franzke C (2010) Long-range dependence and climate noise characteristics of Antarctic temperature data. J Clim 23:6074–6081CrossRefGoogle Scholar
  16. Franzke C (2012) Nonlinear trends, long-range dependence, and climate noise properties of surface temperature. J Clim 25:4172–4183CrossRefGoogle Scholar
  17. Franzke C (2013) A novel method to test for significant trends in extreme values in serially dependent time series. Geophys Res Lett 40:1391–1395CrossRefGoogle Scholar
  18. Gil-Alana LA (2005) Statistical modeling of the temperatures in the Northern Hemisphere using fractional integration techniques. J Clim 18:5357–5369CrossRefGoogle Scholar
  19. IPCC, Stocker TF et al (eds) (2013) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge and New YorkGoogle Scholar
  20. Joughin I, Smith BE, Medley B (2014) Marine Ice Sheet Collapse Potentially Underway for the Thwaites Glacier Basin, West Antarctica. Science 344:735–738CrossRefGoogle Scholar
  21. Khaled HH, Rao R (1998) A modified Mann–Kendall trend test for autocorrelated data. J Hydrol 204:182–196CrossRefGoogle Scholar
  22. Kalnay E, Cai M (2003) Impact of urbanization and land-use change on climate. Nature 423:528–531CrossRefGoogle Scholar
  23. Kantelhardt JW, Koscielny-Bunde E, Rego HHA, Havlin S, Bunde A (2001) Detecting long-range correlations with detrended fluctuation analysis. Phys A 295:441–454CrossRefGoogle Scholar
  24. Koscielny-Bunde et al (1998) Indication of a universal persistence law governing atmospheric variability. Phys Rev Lett 81:729–732CrossRefGoogle Scholar
  25. Kriegler E, Hall JW, Held H, Dawson R, Schellnhuber HJ (2009) Imprecise probability assessment of tipping points in the climate system. PNAS 106(13):5041–6CrossRefGoogle Scholar
  26. Kushnir Y, Robinson WA, Chang P, Robertson AW (2006) The physical basis for predicting Atlantic sector seasonal-to-interannual climate variability. J Clim 19:5949–5970CrossRefGoogle Scholar
  27. Lee S, Feldstein SB (2013) Detecting ozone- and greenhouse gas-driven wind trends with observational data. Science 339:563CrossRefGoogle Scholar
  28. Lennartz S, Bunde A (2009) Trend evaluation in records with long-term memory: application to global warming. Geophys Res Lett 36:L16706CrossRefGoogle Scholar
  29. Lennartz S, Bunde A (2009) Eliminating finite-size effects and detecting the amount of white noise in short records with long-term memory. Phys Rev E 79:066101CrossRefGoogle Scholar
  30. Lennartz S, Bunde A (2011) Distribution of natural trends in long-term correlated records: a scaling approach. Phys Rev E 84:021129CrossRefGoogle Scholar
  31. Lenton T et al (2008) Tipping elements in the Earth’s climate system. Proc Nat Acad Sci USA 105:1786–1793CrossRefGoogle Scholar
  32. Lovejoy S, Schertzer D (2012) Low frequency weather and emergence of climate. In: Sharma AS, Bunde A, Baker D, Dimri VP (eds) Extreme events and natural hazards: the complexity perspective. AGU Monographs, Washington, pp 231–254CrossRefGoogle Scholar
  33. Malamud BD, Turcotte DL (1999) Self-affine time series I: generation and analyses. Adv Geophys 40:1–90CrossRefGoogle Scholar
  34. McMillan M, Shepherd A (2014) Increased ice losses from Antarctica detected by CryoSat-2. Geophys Res Lett 41:3899–3905CrossRefGoogle Scholar
  35. Mengel M, Levermann A (2014) Ice plug prevents irreversible discharge from East Antarctica. Nat Clim Change 4:451–455CrossRefGoogle Scholar
  36. Mouginot J, Rignot E, Scheuchl B (2014) Sustained increase in ice discharge from the Amundsen Sea Embayment, West Antarctica, from 1973 to 2013. Geophys Res Lett 41:1576–1584CrossRefGoogle Scholar
  37. Pelletier JD, Turcotte DL (1997) Long-range persistence in climatological and hydrological time series: analysis, modeling and application to drought hazard assessment. J Hydrol 203:198–208CrossRefGoogle Scholar
  38. Peng CK et al (1994) Mosaic organization of DNA nucleotides. Phys Rev E 49:1685CrossRefGoogle Scholar
  39. Percival DB, Overland JE, Mofjeld HO (2001) Interpretation of North Pacific variability as short- and long-memory process. J Clim 14:4545–4559CrossRefGoogle Scholar
  40. Pritchard HD et al (2012) Antarctic ice sheet loss driven by basal melting of ice shelves. Nature 484:502505CrossRefGoogle Scholar
  41. Rignot E, Jacobs S, Mouginot J, Scheuchl B (2013) Ice-shelf melting around Antarctica. Science 341(6143):266–70CrossRefGoogle Scholar
  42. Rybski D, Bunde A, Storch H (2008) Long-term memory in 1000-year simulated temerature records. J Geophys Res Atmos 113:D02106CrossRefGoogle Scholar
  43. Santer BD et al (2000) Statistical significance of trends and trend differences in layer-average atmospheric temperature time series. J Geophys Res Atmos 105:7337CrossRefGoogle Scholar
  44. Sasgen I et al (2013) Antarctic ice-mass balance 2003 to 2012: regional reanalysis of GRACE satellite gravimetry measurements with improved estimate of glacial-isostatic adjustment based on GPS uplift rates. The Cryosphere 7(5):1499–1512CrossRefGoogle Scholar
  45. Son S-W et al (2008) The impact of stratospheric ozone recovery on the Southern Hemisphere westerly jet. Science 320:1486CrossRefGoogle Scholar
  46. Steig EJ et al (2009) Warming of the Antarctic ice-sheet surface since the 1957 International Geophysical Year. Nature 457:459–462CrossRefGoogle Scholar
  47. Stephenson DB, Pavan V, Bojariu R (2000) Is the North Atlantic Oscillation a random walk? Int J Climatol 20:1–18CrossRefGoogle Scholar
  48. Tamazian A, Ludescher J, Bunde A (2015) The significance of trends in long-term correlated records. Phys Rev E 91:032806CrossRefGoogle Scholar
  49. Thomas ER, Dennis P, Bracegirdle T, Franzke C (2009) Ice core evidence for significant 100-year regional warming on the Antarctic Peninsula. Geophys Res Lett 36:L20704CrossRefGoogle Scholar
  50. Turner J et al (2004) The SCAR READER project: toward a high-quality database of mean Antarctic meteorological observations. J Clim 17:2890–2898CrossRefGoogle Scholar
  51. Turner J et al (2005) Antarctic climate change during the last 50 years. Int J Climatol 25:279–294CrossRefGoogle Scholar
  52. Turner J, Maksym T, Phillips T, Marshell GJ, Meredith MP (2012) The impact of changes in sea ice advance on the large winter warming on the western Antarctic Peninsula. Int J Climatol 33:852–861CrossRefGoogle Scholar
  53. Vyushin D, Zhidkov I, Brenner S, Havlin S, Bunde A (2004) Volcanic forcing improves atmosphere–ocean coupled general circulation model scaling performance. Geophys Res Lett 31:L10206CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Josef Ludescher
    • 1
  • Armin Bunde
    • 1
  • Christian L. E. Franzke
    • 2
  • Hans Joachim Schellnhuber
    • 3
    • 4
  1. 1.Institut für Theoretische PhysikUniversität GiessenGiessenGermany
  2. 2.Meteorological Institute, Center of Earth System Research and Sustainability (CEN)University of HamburgHamburgGermany
  3. 3.Potsdam Institute for Climate Impact ResearchPotsdamGermany
  4. 4.Santa Fe InstituteSanta FeUSA

Personalised recommendations