Climate Dynamics

, Volume 46, Issue 1–2, pp 227–243 | Cite as

Convective and stratiform precipitation characteristics in an ensemble of regional climate model simulations

  • Jan KyselýEmail author
  • Zuzana Rulfová
  • Aleš Farda
  • Martin Hanel


We apply a recently proposed algorithm for disaggregating observed precipitation data into predominantly convective and stratiform, and evaluate biases in characteristics of parameterized convective (subgrid) and stratiform (large-scale) precipitation in an ensemble of 11 RCM simulations for recent climate in Central Europe. All RCMs have a resolution of 25 km and are driven by the ERA-40 reanalysis. We focus on mean annual cycle, proportion of convective precipitation, dependence on altitude, and extremes. The results show that characteristics of total precipitation are often better simulated than are those of convective and stratiform precipitation evaluated separately. While annual cycles of convective and stratiform precipitation are reproduced reasonably well in most RCMs, some of them consistently and substantially overestimate or underestimate the proportion of convective precipitation throughout the year. Intensity of convective precipitation is underestimated in all RCMs. Dependence on altitude is also simulated better for stratiform and total precipitation than for convective precipitation, for which several RCMs produce unrealistic slopes. Extremes are underestimated for convective precipitation while they tend to be slightly overestimated for stratiform precipitation, thus resulting in a relatively good reproduction of extremes in total precipitation amounts. The results suggest that the examined ensemble of RCMs suffers from substantial deficiencies in reproducing precipitation processes and support previous findings that climate models’ errors in precipitation characteristics are mainly related to deficiencies in the representation of convection.


Regional climate models Convective precipitation Stratiform precipitation Climatology Extremes Central Europe 



The study was supported by the Czech Science Foundation under project 14-18675S. Z. Rulfová was supported also by the Charles University in Prague, student project GA UK No. 851713. The RCM data were obtained from the ENSEMBLES project database funded within the EU-FP6 ( We thank anonymous reviewers for insightful comments that helped improve the original manuscript.


  1. Anagnostou EN (2004) A convective/stratiform precipitation classification algorithm for volume scanning weather radar observations. Meteorol Appl 11:291–300CrossRefGoogle Scholar
  2. Ban N, Schmiedli J, Schär C (2014) Evaluation of the convection-resolving regional climate modelling approach in decade-long simulations. J Geophys Res 119:7889–7907Google Scholar
  3. Boberg F, Berg P, Thejll P, Gutowski W, Christensen J (2010) Improved confidence in climate change projections of precipitation further evaluated using daily statistics from ENSEMBLES models. Clim Dyn 35:1509–1520CrossRefGoogle Scholar
  4. Bougeault P (1985) A simple parameterization of the large-scale effects of cumulus convection. Mon Weather Rev 113:2108–2121CrossRefGoogle Scholar
  5. Boyle J, Klein SA (2010) Impact of horizontal resolution on climate model forecasts of tropical precipitation and diabatic heating for the TWP-ICE period. J Geophys Res 115:D23112CrossRefGoogle Scholar
  6. Brockhaus P, Lüthi D, Schär C (2008) Aspects of the diurnal cycle in a regional climate model. Meteorol Z 17:433–443. doi: 10.1127/0941-2948/2008/0316 CrossRefGoogle Scholar
  7. Christensen JH, Christensen OB, Lopez P, van Meijgaard E, Botzet M (1996) The HIRHAM4 regional atmospheric climate model. Scientific Report 96–4. Danish Meteorological Institute: Copenhagen, DenmarkGoogle Scholar
  8. Christensen JH, Kjellström E, Giorgi F, Lenderink G, Rummukainen M (2010) Weight assignment in regional climate models. Clim Res 44:179–194CrossRefGoogle Scholar
  9. Coles S (2001) An introduction to statistical modeling of extreme values. Springer, LondonCrossRefGoogle Scholar
  10. Dai A (2006) Precipitation characteristics in eighteen coupled climate models. J Clim 19:4605–4630CrossRefGoogle Scholar
  11. Dai A, Trenberth KE (2004) The diurnal cycle and its depiction in the community climate system model. J Clim 5:930–951CrossRefGoogle Scholar
  12. Déqué M, Rowell DP, Lüthi D, Giorgi F, Christensen JH, Rockel B, Jacob D, Kjellström E, de Castro M, van den Hurk B (2007) An intercomparison of regional climate simulations for Europe: assessing uncertainties in model projections. Clim Change 81:53–70CrossRefGoogle Scholar
  13. Durman CF, Gregory JM, Hassel DC, Jones RG, Murphy JM (2001) Comparison of extreme European daily precipitation simulated by a global and regional model for present and future climate. Q J R Meteorol Soc 1127:1005–1015CrossRefGoogle Scholar
  14. Farda A, Štěpánek P, Halenka T, Skalák P, Belda M (2007) Model Aladin in climate mode forced with ERA-40 reanalysis (coarse resolution experiment). Meteorol J 10:123–130CrossRefGoogle Scholar
  15. Farda A, Deque M, Somot S, Horanyi A, Spiridonov V, Toth H (2010) Model Aladin as regional climate model for Central and Eastern Europe. Stud Geophys Geod 54:313–332CrossRefGoogle Scholar
  16. Fischer AM, Keller DE, Liniger MA, Rajczak J, Schär C, Appenzeller C (2014) Projected changes in precipitation intensity and frequency in Switzerland: a multi-model perspective. Int J Climatol, doi:  10.1002/joc.4162 (in press)
  17. Fowler HJ, Ekström M, Blenkinsop S, Smith AP (2007) Estimating change in extreme European precipitation using a multimodel ensemble. J Geophys Res 112:D18104. doi: 10.1029/2007JD008619 CrossRefGoogle Scholar
  18. Frei C, Christensen J, Deque M, Jacob D, Jones R, Vidale P (2003) Daily precipitation statistics in regional climate models: evaluation and intercomparison for the European Alps. J Geophys Res 108:4124. doi: 10.1029/2002JD002287 CrossRefGoogle Scholar
  19. Gerard L, Geleyn J-F (2005) Evolution of a subgrid deep convection parametrization in a limited-area model with increasing resolution. Q J R Meteorol Soc 131:2293–2312. doi: 10.1256/qj.04.72 CrossRefGoogle Scholar
  20. Giorgi F, Bi X, Pal JS (2004) Mean, interannual variability and trends in a regional climate change experiment over Europe. I. Present day climate (1961–1990). Clim Dyn 22:733–756CrossRefGoogle Scholar
  21. Gregersen IB, Sørup HJD, Madsen H, Rosbjerg D, Mikkelsen PS, Arnbjerg-Nielsen K (2013) Assessing future climatic changes of rainfall extremes at small spatio-temporal scales. Clim Change 118:783–797. doi: 10.1007/s10584-012-0669-0 CrossRefGoogle Scholar
  22. Gregory D, Guichard F (2002) Aspects of the parametrization of organized convection: contrasting cloud-resolving model and single-column model realizations. Q J R Meteorol Soc 128:625–646. doi: 10.1256/003590002321042126 CrossRefGoogle Scholar
  23. Guichard F, Petch JC, Redelsperger J-L, Bechtold P, Chaboureaou J-P et al (2004) Modelling the diurnal cycle of deep precipitating convection over land with cloud-resolving models and single-column models. Q J R Meteorol Soc 130:3139–3172CrossRefGoogle Scholar
  24. Hagemann S, Arpe K, Bengtsson L (2005) Validation of the hydrological cycle of ERA40. Reports on Earth System Science 10, Max-Planck-Institute for Meteorology, Hamburg, ISSN 1614-1199Google Scholar
  25. Hanel M, Buishand TA (2010) On the value of hourly precipitation extremes in regional climate model simulations. J Hydrol 393:265–273CrossRefGoogle Scholar
  26. Herrera S, Fita L, Fernández J, Gutiérrez JM (2010) Evaluation of the mean and extreme precipitation regimes from the ENSEMBLES regional climate multimodel simulation over Spain. J Geophys Res 115:D21117CrossRefGoogle Scholar
  27. Hohenegger C, Brockhaus P, Schär C (2008) Towards climate simulations at cloud-resolving scales. Meteorol Z 17:383–394. doi: 10.1127/0941-2948/2008/0303 CrossRefGoogle Scholar
  28. Holtanová E, Mikšovský J, Kalvová J, Pišoft P, Motl M (2012) Performance of ENSEMBLES regional climate models over Central Europe using various metrics. Theor Appl Climatol 108:463–470CrossRefGoogle Scholar
  29. Hosking JRM, Wallis JR (1997) Regional frequency analysis. An approach based on L-moments. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  30. Houze RAJ (1997) Stratiform precipitation in regions of convection: a meteorological paradox? Bull Am Meteorol Soc 78:2179–2196CrossRefGoogle Scholar
  31. Hu L, Li Y, Song Y, Deng D (2011) Seasonal variability in tropical and subtropical convective and stratiform precipitation of the East Asian monsoon. Sci China Earth Sci 54:1595–1603CrossRefGoogle Scholar
  32. Huff FA, Shipp WL (1969) Spatial correlations of storm, monthly, and seasonal precipitation. J Appl Meteorol 8:542–550CrossRefGoogle Scholar
  33. Jacob D (2001) A note to the simulation of the annual and inter-annual variability of the water budget over the Baltic Sea drainage basin. Meteorol Atmos Phys 77:61–73CrossRefGoogle Scholar
  34. Jacob D, Bärring L, Christensen OB, Christensen JH, de Castro M et al (2007) An inter-comparison of regional climate models for Europe: model performance in present-day climate. Clim Change 81:31–52CrossRefGoogle Scholar
  35. Jaeger E, Anders I, Luthi D, Rockel B, Schar C, Seneviratne S (2008) Analysis of ERA40-driven CLM simulation for Europe. Meteorol Z 17:349–367CrossRefGoogle Scholar
  36. Kain JS, Fritsch JM (1993) Convective parameterization for mesoscale models: the Kain-Fritsch scheme. In: The representation of cumulus convection in numerical models. Meteor Monogr 24. American Meteorological Society, Boston, pp 165–170Google Scholar
  37. Kendon EJ, Roberts NM, Senior CA, Roberts MJ (2012) Realism of rainfall in a very high resolution regional climate model. J Clim 25:5791–5806. doi: 10.1175/JCLI-D-11-00562.1 CrossRefGoogle Scholar
  38. Kendon EJ, Roberts NM, Fowler HJ, Roberts MJ, Chan SC, Senior C (2014) Heavier summer downpours with climate change revealed by weather forecast resolution model. Nat Clim Change. doi: 10.1038/nclimate2258 Google Scholar
  39. Kjellström E, Barring L, Gollvik L, Hansson U, Jones C et al (2005) A 140-year simulation of European climate with the new version of the Rossby Centre regional atmospheric climate model (RCA3). SMHI reports meteorology and climatology 108, SMHI, SE-60176. Norrköping, Sweden, p 54Google Scholar
  40. Kjellström E, Boberg F, Castro M, Christensen JH, Nikulin G, Sanchez E (2010) Daily and monthly temperature and precipitation statistics as performance indicators for regional climate models. Clim Res 44:135–150. doi: 10.3354/cr00932 CrossRefGoogle Scholar
  41. Klein Tank AMG, Wijngaard JB, Konnen GP, Bohm R, Demaree G et al (2002) Daily dataset of 20th-century surface air temperature and precipitation series for the European Climate Assessment. Int J Climatol 22:1441–1453CrossRefGoogle Scholar
  42. Kyselý J, Beguería S, Beranová R, Gaál L, López-Moreno JI (2012) Different patterns of climate change scenarios for short-term and multi-day precipitation extremes in the Mediterranean. Glob Planet Change 98–99:63–72. doi: 10.1016/j.gloplacha.2012.06.010 CrossRefGoogle Scholar
  43. Lam HY, Luini L, Din J, Capsoni C, Panagopoulos AD (2010) Stratiform and convective rain discrimination for equatorial region. In: Proceedings of the 2010 IEEE student conference on research and development—engineering: innovation and beyond, SCOReD 2010, 112–116. doi: 10.1109/SCORED.2010.5703983
  44. Larsen MAD, Thejll P, Christensen JH, Refsgaard JC, Jensen KH (2013) On the role of domain size and resolution in the simulations with the HIRHAM region climate model. Clim Dyn 40:2903–2918. doi: 10.1007/s00382-012-1513-y CrossRefGoogle Scholar
  45. Lee M-I, Schubert SD, Suarez MJ, Held IM, Kumar A, Bell TL, Schemm JKE, Lau NC, Ploshay JJ, Kim HK, Yoo SH (2007) Sensitivity to horizontal resolution in the AGCM simulations of warm season diurnal cycle of precipitation over the United States and northern Mexico. J Climate 20:1862–1881CrossRefGoogle Scholar
  46. Lenderink G, van Meijgaard E (2008) Increase in hourly precipitation extremes beyond expectations from temperature changes. Nat Geosci 1:511–514. doi: 10.1038/ngeo262 CrossRefGoogle Scholar
  47. Lenderink G, van der Hurk B, van Meijgaard E, van Ulden A, Cuijpers H (2003) Simulation of present day climate in RACMO2: first results and model developments. KNMI, Technical Report 252, 24 ppGoogle Scholar
  48. Li F, Collins WD, Wehner MF, Williamson DL, Olson JG, Algieri C (2011) Impact of horizontal resolution on simulation of extremes in an aqua-planet version of Community Atmospheric Model (CAM3). Tellus 63A:884–892CrossRefGoogle Scholar
  49. Maraun D, Osborn TJ, Rust HW (2012) The influence of synoptic airflow on UK daily precipitation extremes. Part II: regional climate model and E-OBS data validation. Clim Dyn 39:287–301. doi: 10.1007/s00382-011-1176-0 CrossRefGoogle Scholar
  50. May W (2007) The simulation of the variability and extremes of daily precipitation over Europe by the HIRHAM regional climate model. Glob Planet Change 57:59–82. doi: 10.1016/j.gloplacha.2006.11.026 CrossRefGoogle Scholar
  51. Molinari J, Dudek M (1992) Parameterization of convective precipitation in mesoscale numerical models: a critical review. Mon Weather Rev 120:326–344CrossRefGoogle Scholar
  52. Noguer M, Jones RG, Murphy JM (1998) Sources of systematic errors in the climatology of a regional climate model over Europe. Clim Dyn 14:691–712CrossRefGoogle Scholar
  53. Overeem A, Buishand TA, Holleman I, Uijlenhoet R (2010) Extreme value modelling of areal rainfall from weather radar. Water Resour Res 46:W09514. doi: 10.1029/2009WR008517 Google Scholar
  54. Plavcová E, Kyselý J, Štěpánek P (2014) Links between circulation types and precipitation in Central Europe in the observed data and regional climate model simulations. Int J Climatol 34:2885–2898. doi: 10.1002/joc.3882 Google Scholar
  55. Radu R, Déqué M, Somot S (2008) Spectral nudging in a spectral regional climate model. Tellus 60A:898–910CrossRefGoogle Scholar
  56. Rauscher SA, Coppola E, Piani C, Giorgi F (2010) Resolution effects on regional climate model simulations of seasonal precipitation over Europe. Clim Dyn 35:685–711CrossRefGoogle Scholar
  57. Řezáčová D, Pešice P, Sokol Z (2005) An estimation of the PMP for river basins in the Czech Republic. Atmos Res 77:407–421CrossRefGoogle Scholar
  58. Rulfová Z, Kyselý J (2013) Disaggregating convective and stratiform precipitation from station weather data. Atmos Res 134:100–115CrossRefGoogle Scholar
  59. Sanchéz E, Gallardo C, Gaertner MA, Arribas A, Castro M (2004) Future climate extreme events in the Mediterranean simulated by a regional climate model: a first approach. Glob Planet Change 44:163–180CrossRefGoogle Scholar
  60. Schumacher C, Houze RA (2003) Stratiform rain in the tropics as seen by the TRMM precipitation radar. J Clim 16:1739–1756CrossRefGoogle Scholar
  61. Sempere-Torres D, Sanchez-Diezma R, Zawadzki I, Creutin JD (2000) Identification of stratiform and convective areas using radar data with application to the improvement of DSD analysis and Z-R relations. Phys Chem Earth 25:985–990CrossRefGoogle Scholar
  62. Skalák P, Déqué M, Belda M, Farda A, Halenka T, Csima G, Bartholy J, Caian M, Spiridonov V (2014) CECILIA regional climate simulations for present climate—validation and inter-comparison. Clim Res. doi: 10.3354/cr01207 Google Scholar
  63. Skaugen T (1997) Classification of rainfall into small- and large-scale events by statistical pattern recognition. J Hydrol 200:40–57. doi: 10.1016/S0022-1694(97)00003-6 CrossRefGoogle Scholar
  64. Svensson C, Jones DA (2010) Review of methods for deriving areal reduction factors. J Flood Risk Manag 3:232–245CrossRefGoogle Scholar
  65. Swann H (2001) Evaluation of the mass-flux approach to parametrizing deep convection. Q J R Meteorol Soc 127:1239–1260CrossRefGoogle Scholar
  66. Tao W-K, Lang S, Simpson J, Olson WS, Johnson D, Ferrier B, Kummerow C, Adler R (2000) Vertical profiles of latent heat release and their retrieval for TOGA COARE convective systems using a cloud resolving model, SSM/I, and ship-borne radar data. J Meteorol Soc Jpn 78:333–355Google Scholar
  67. Tiedtke M (1989) A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon Weather Rev 117:1779–1800CrossRefGoogle Scholar
  68. Tolasz R et al (2007) Climate Atlas of Czechia. Czech Hydrometeorological Institute and Palacký University, Prague and OlomoucGoogle Scholar
  69. Uppala SM, Kallberg PW, Simmons AJ, Andrae U, Bechtold VDC et al (2005) The ERA-40 re-analysis. Q J R Meteorol Soc 131:2961–3012. doi: 10.1256/qj.04.176 CrossRefGoogle Scholar
  70. Wakazuki Y, Nakamura M, Kanada S, Muroi C (2008) Climatological reproducibility evaluation and future climate projection of extreme precipitation events in the baiu season using a high-resolution non-hydrostatic RCM in comparison with an AGCM. J Meteorol Soc Jpn 86:951–967CrossRefGoogle Scholar
  71. Wilks DS (1995) Statistical methods in the atmospheric science. Academic Press, San Diego, p 467Google Scholar
  72. Williamson DL (2013) The effect of time steps and time-scales on parametrization suites. Q J R Meteorol Soc 139:548–560. doi: 10.1002/qj.1992 CrossRefGoogle Scholar
  73. Zadra A, Caya D, Cote J, Dugas B, Jones C, Laprise R, Winger K, Caron L-P (2008) The next Canadian regional climate model. Phys Can 64:75–83Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Jan Kyselý
    • 1
    • 2
    Email author
  • Zuzana Rulfová
    • 1
    • 3
  • Aleš Farda
    • 4
  • Martin Hanel
    • 2
  1. 1.Institute of Atmospheric Physics AS CRPrague 4Czech Republic
  2. 2.Faculty of Environmental SciencesCzech University of Life SciencesPragueCzech Republic
  3. 3.Faculty of Mathematics and PhysicsCharles University in PraguePragueCzech Republic
  4. 4.Global Change Research Centre AS CRBrnoCzech Republic

Personalised recommendations