Climate Dynamics

, Volume 45, Issue 11–12, pp 3609–3622 | Cite as

Oxygen stable isotope ratios from British oak tree-rings provide a strong and consistent record of past changes in summer rainfall

  • Giles H. F. YoungEmail author
  • Neil J. Loader
  • Danny McCarroll
  • Roderick J. Bale
  • Joanne C. Demmler
  • Daniel Miles
  • Nigel T. Nayling
  • Katja T. Rinne
  • Iain Robertson
  • Camilla Watts
  • Matthew Whitney


United Kingdom (UK) summers dominated by anti-cyclonic circulation patterns are characterised by clear skies, warm temperatures, low precipitation totals, low air humidity and more enriched oxygen isotope ratios (δ18O) in precipitation. Such conditions usually result in relatively more positive (enriched) oxygen isotope ratios in tree leaf sugars and ultimately in the tree-ring cellulose formed in that year, the converse being true in cooler, wet summers dominated by westerly air flow and cyclonic conditions. There should therefore be a strong link between tree-ring δ18O and the amount of summer precipitation. Stable oxygen isotope ratios from the latewood cellulose of 40 oak trees sampled at eight locations across Great Britain produce a mean δ18O chronology that correlates strongly and significantly with summer indices of total shear vorticity, surface air pressure, and the amount of summer precipitation across the England and Wales region of the United Kingdom. The isotope-based rainfall signal is stronger and much more stable over time than reconstructions based upon oak ring widths. Using recently developed methods that are precise, efficient and highly cost-effective it is possible to measure both carbon (δ13C) and oxygen (δ18O) isotope ratios simultaneously from the same tree-ring cellulose. In our study region, these two measurements from multiple trees can be used to reconstruct summer temperature (δ13C) and summer precipitation (δ18O) with sufficient independence to allow the evolution of these climate parameters to be reconstructed with high levels of confidence. The existence of long, well-replicated oak tree-ring chronologies across the British Isles mean that it should now be possible to reconstruct both summer temperature and precipitation over many centuries and potentially millennia.


Precipitation Temperature UK Stable isotopes Tree-rings 



We acknowledge support from: C3W (GHFY, NJL & DMc), the Scottish Pine Project (NJL), early stage research funding from the University of Wales Trinity Saint David (RJB) and The Leverhulme Trust (Grant No. RPG-2014-327, GHFY, NJL, DMc & DM). We thank CCW (now NRW) for SSSI consent, and the National Trust for assisting with access at Dinefwr and Allt Lan-las (RJB & NTN).

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

382_2015_2559_MOESM1_ESM.xlsx (49 kb)
Supplementary material 1 (XLSX 48 kb)
382_2015_2559_MOESM2_ESM.tif (428 kb)
Supplementary material 2 (TIFF 427 kb)
382_2015_2559_MOESM3_ESM.tif (204 kb)
Supplementary material 3 (TIFF 204 kb)


  1. Boettger T, Haupt M, Knöller K, Weise M, Waterhouse JS, Rinne KT, Loader NJ, Sonninen E, Jungner H, Masson-Delmotte V, Stievenard M, Guillemin MT, Pierre M, Pazdur A, Leuenberger M, Filot M, Saurer M, Reynolds CE, Helle G, Schleser GH (2007) Wood cellulose preparation methods and mass spectrometric analyses of δ13C, δ18O, and nonexchangeable δ2H values in cellulose, sugar, and starch: an interlaboratory comparison. Anal Chem 79:4603–4612CrossRefGoogle Scholar
  2. Brienen RJW, Helle G, Pons TL, Guyot J, Gloor M (2012) Oxygen isotopes in tree rings are a good proxy for Amazon precipitation and El Niño-Southern Oscillation variability. PNAS 109:16957–16962. doi: 10.11073/pnas.1205977109 CrossRefGoogle Scholar
  3. Büntgen U, Trouet V, Frank D, Leuschner HH, Friedrichs D (2010) Tree-ring indicators of German summer drought over the last millennium. Quat Sci Rev 29:1005–1016CrossRefGoogle Scholar
  4. Cook ER, Briffa KR, Meko DM, Graybill A, Funkhouser G (1995) The ‘segment length curse’ in long tree-ring chronology development for palaeoclimatic studies. Holocene 5:229–237CrossRefGoogle Scholar
  5. Cooper RJ, Melvin TM, Tyers I, Wilson RJS, Briffa KR (2013) A tree-ring reconstruction of East Anglian (UK) hydroclimate variability over the last millennium. Clim Dyn 40:1019–1039. doi: 10.1007/s00382-00012-01328-x CrossRefGoogle Scholar
  6. Edwards TWD, Birks SJ, Luckman BH, MacDonald GM (2008) Climatic and hydrologic variability during the past millennium in the eastern Rocky Mountains and northern Great Plains of western Canada. Quat Res 70:188–197CrossRefGoogle Scholar
  7. Gagen MH, McCarroll D, Loader NJ, Robertson I, Jalkanen R, Anchukaitis KJ (2007) Exorcising the ‘segment length curse’: summer temperature reconstruction since AD 1640 using non-detrended stable carbon isotope ratios from pine trees in northern Finland. Holocene 17:435–446CrossRefGoogle Scholar
  8. Gagen MH, Zorita E, McCarroll D, Young GHF, Grudd H, Jalkanen R, Loader NJ, Robertson I, Kirchhefer AJ (2011) Cloud response to summer temperatures in Fennoscandia over the last thousand years. Geophys Res Lett 38:L05701. doi: 10.01029/02010GL046216 Google Scholar
  9. García-Suárez AM, Butler CJ, Baillie MGL (2009) Climate signal in tree-ring chronologies in a temperate climate: a multi-species approach. Dendrochronologia 27:183–198CrossRefGoogle Scholar
  10. Hafner P, McCarroll D, Robertson I, Loader NJ, Gagen MH, Young GHF, Bale RJ, Sominen E, Levanič T (2014) A 520 year record of summer sunshine for the eastern European Alps based on stable carbon isotopes in larch tree rings. Clim Dyn. doi: 10.1007/s00382-00013-01864-z Google Scholar
  11. Hari P, Nöjd P (2009) The effect of temperature and PAR on the annual photosynthetic production of Scots pine in northern Finland during 1906–2002. Boreal Env Res 14:5–18Google Scholar
  12. Hari P, Hallman E, Salminen R, Vapaavuori E (1981) Evaluation of factors controlling net photosynthetic rate in Scots pine seedlings under field conditions without water stress. Oecologia 48:186–189CrossRefGoogle Scholar
  13. Heinrich I, Touchan R, Dorado Liñán I, Vos H, Helle G (2013) Winter-to-spring temperature dynamics in Turkey derived from tree rings since AD 1125. Clim Dyn 41:1685–1701. doi: 10.1007/s00382-00013-01702-00383 CrossRefGoogle Scholar
  14. Hilasvuori E, Berninger F, Sonninen E, Tuomenvirta H, Jungner H (2009) Stability of climate signal in carbon and oxygen isotope records and ring width from Scots pine (Pinus sylvestris L.) in Finland. J Quat Sci 24:469–480CrossRefGoogle Scholar
  15. Hughes MK, Gray B, Pilcher JR, Baillie MGL, Leggett P (1978) Climatic signals in British Isles tree-ring chronologies. Nature 272:605–606CrossRefGoogle Scholar
  16. Jenkinson AF, Collison FP (1977) An initial climatology of gales over the North Sea. Synoptic Climatology Branch Memorandum No. 62. Meteorological Office, BracknellGoogle Scholar
  17. Jones PD (1994) Hemispheric surface air temperature variations: a reanalysis and an update to 1993. J Clim 7:1794–1802CrossRefGoogle Scholar
  18. Jones PD, Harpham C, Briffa KR (2013) Lamb weather types derived from reanalysis products. Int J Climatol 33:1129–1139. doi: 10.1002/joc.3498 CrossRefGoogle Scholar
  19. Kress A, Saurer M, Siegwolf RTW, Frank D, Esper J, Bugmann H (2010) A 350 year drought reconstruction from Alpine tree ring stable isotopes. Global Biogeochem Cycles 24(GB2011):2010. doi: 10.1029/2009GB003613 Google Scholar
  20. Labuhn I, Daux V, Pierre M, Stievenard M, Girardclos O, Feŕon A, Genty D, Masson-Delmotte V, Mestre O (2014) Tree age, site and climate controls on tree ring cellulose δ18O: a case study on oak trees from south-western France. Dendrochronologia 32:78–89. doi: 10.1016/j.dendro.2013.1011.1001 CrossRefGoogle Scholar
  21. Lamb HH (1972) British Isles Weather types and a register of daily sequence of circulation patterns, 1861–1971. Geophysical Memoir 116. HMSO, LondonGoogle Scholar
  22. Liu Y, Wang Y, Li Q, Song H, Linderholm HW, Leavitt SW, Wang R, An Z (2014) Tree-ring stable carbon isotope-based May–July temperature reconstruction over Nanwutai, China, for the past century and its record of 20th century warming. Quat Sci Rev 93:67–76. doi: 10.1016/j.quascirev.2014.1003.1023 CrossRefGoogle Scholar
  23. Loader NJ, Robertson I, Barker AC, Switsur VR, Waterhouse JS (1997) An improved technique for the batch processing of small wholewood samples to a-cellulose. Chem Geol 136:313–317CrossRefGoogle Scholar
  24. Loader NJ, Santillo PM, Woodman-Ralph JP, Rolfe JE, Hall MA, Gagen M, Robertson I, Wilson R, Froyd CA, McCarroll D (2008) Multiple stable isotopes from oak trees in southwestern Scotland and the potential for stable isotope dendroclimatology in maritime climatic regions. Chem Geol 252:62–71CrossRefGoogle Scholar
  25. Loader NJ, Young GHF, Grudd H, McCarroll D (2013a) Stable carbon isotopes from Torneträsk, northern Sweden provide a millennial length reconstruction of summer sunshine and its relationship to Arctic circulation. Quat Sci Rev 62:97–113CrossRefGoogle Scholar
  26. Loader NJ, Young GHF, McCarroll D, Wilson RJS (2013b) Quantifying uncertainty in isotope dendroclimatology. Holocene 23:1221–1226. doi: 10.1177/0959683613486945 CrossRefGoogle Scholar
  27. Masson-Delmotte V, Raffalli-Delerce G, Danis PA, Yiou P, Stievenard M, Guibal F, Mestre O, Bernard V, Goosse H, Hoffmann G, Jouzel J (2005) Changes in European precipitation seasonality and in drought frequencies revealed by a four-century-long tree-ring isotopic record from Brittany, western France. Clim Dyn 24:57–69CrossRefGoogle Scholar
  28. McCarroll D, Loader NJ (2004) Stable isotopes in tree rings. Quat Sci Rev 23:771–801CrossRefGoogle Scholar
  29. McCarroll D, Gagen MH, Loader NJ, Robertson I, Anchukaitis KJ, Los S, Young GHF, Jalkanen R, Kirchhefer AJ, Waterhouse JS (2009) Correction of tree ring stable carbon isotope chronologies for changes in the carbon dioxide content of the atmosphere. Geochim Cosmochim Ac 73:1539–1547CrossRefGoogle Scholar
  30. McCarroll D, Tuovinen M, Campbell R, Gagen M, Grudd H, Jalkanen R, Loader NJ, Robertson I (2011) A critical evaluation of multi-proxy dendroclimatology in northern Finland. J Quat Sci 26:7–14. doi: 10.1002/jqs.1408 CrossRefGoogle Scholar
  31. McCarroll D, Loader NJ, Jalkanen R, Gagen M, Grudd H, Gunnarson BE, Kirchhefer AJ, Friedrich M, Linderholm HW, Lindholm M, Boettger T, Los SO, Remmele S, Kononov YM, Yamazaki YH, Young GHF, Zorita E (2013) A 1200-year multi-proxy record of tree growth and summer temperature at the northern pine forest limit of Europe. Holocene 23:471–484. doi: 10.177/0959683612467483 CrossRefGoogle Scholar
  32. McCarroll D, Young GHF, Loader NJ (2015) Measuring the skill of variance-scaled climate reconstructions and a test for the capture of extremes. Holocene 25:618–626. doi: 10.1177/0959683614565956 CrossRefGoogle Scholar
  33. NRC (2006) Surface temperature reconstructions for the last 2,000 years. The National Academies, Washington, DCGoogle Scholar
  34. Pilcher JR, Gray B (1982) The relationships between oak tree growth and climate in Britain. J Ecol 70:297–304CrossRefGoogle Scholar
  35. Rinne KT, Boettger T, Loader NJ, Robertson I, Switsur VR, Waterhouse JS (2005) On the purification of a-cellulose from resinous wood for stable isotope (H, C and O) analysis. Chem Geol 222:75–82CrossRefGoogle Scholar
  36. Rinne KT, Loader NJ, Switsur VR, Treydte KS, Waterhouse JS (2010) Investigating the influence of sulphur dioxide (SO2) on the stable isotope ratios (delta C-13 and delta O-18) of tree rings. Geochim Cosmochim Ac 74:2327–2339CrossRefGoogle Scholar
  37. Rinne KT, Loader NJ, Switsur VR, Waterhouse JS (2013) 400-year May–August precipitation reconstruction for Southern England using isotopes in tree rings. Quat Sci Rev 60:13–25CrossRefGoogle Scholar
  38. Robertson I, Switsur VR, Carter AHC, Barker AC, Waterhouse JS, Briffa KR, Jones PD (1997) Signal strength and climate relationships in 13C/12C ratios of tree ring cellulose from oak in east England. J Geophys Res 102:19507–19519CrossRefGoogle Scholar
  39. Robertson I, Waterhouse JS, Barker AC, Carter AHC, Switsur VR (2001) Oxygen isotope ratios of oak in east England: implications for reconstructing the isotopic composition of precipitation. Earth Planet Sci Lett 191:21–31CrossRefGoogle Scholar
  40. Roden JS, Lin G, Ehleringer JR (2000) A mechanistic model for interpretation of hydrogen and oxygen isotope ratios in tree-ring cellulose. Geochim Cosmochim Ac 64:21–35CrossRefGoogle Scholar
  41. Saurer M, Borella S, Leuenberger M (1997) δ18O of tree rings of beech (Fagus silvatica) as a record of δ18O of the growing season precipitation. Tellus 49B:82–90Google Scholar
  42. Saurer M, Cherubini P, Reynolds-Henne CE, Treydte KS, Anderson WT, Siegwolf RTW (2008) An investigation of the common signal in tree ring stable isotope chronologies at temperate sites. J Geophys Res 113:G04035. doi: 10.01029/02008JG000689 Google Scholar
  43. Saurer M, Kress A, Leuenberger M, Rinne KT, Treydte KS, Siegwolf RTW (2012) Influence of atmospheric circulation patterns on the oxygen isotope ratio of tree rings in the Alpine region. J Geophys Res 117:D05118. doi: 10.01029/02011JD016861 Google Scholar
  44. Simpson IR, Jones PD (2012) Updated precipitation series for the UK derived from Met Office gridded data. Int J Climatol 32:2271–2282CrossRefGoogle Scholar
  45. Treydte K, Schleser GH, Helle G, Frank DC, Winiger M, Haug GH, Esper J (2006) The twentieth century was the wettest period in northern Pakistan over the past millennium. Nature 440:1179–1182CrossRefGoogle Scholar
  46. Treydte KS, Frank DC, Saurer M, Helle G, Schleser GH, Esper J (2009) Impact of climate and CO2 on a millennium-long tree-ring carbon isotope record. Geochim Cosmochim Ac 73:4635–4647. doi: 10.1016/j.gca.2009.1005.1057 CrossRefGoogle Scholar
  47. Treydte KS, Boda S, Pannatier EG, Fonti P, Frank D, Ullrich B, Saurer M, Siegwolf RTW, Battipalagia G, Werner W, Gessler A (2014) Seasonal transfer of oxygen isotopes from precipitation and soil to the tree ring: source water versus needle water enrichment. New Phytol. doi: 10.1111/nph.12741 Google Scholar
  48. Trouet V, van Oldenborgh GJ (2013) KNMI climate explorer: a web based research tool for high-resolution paleoclimatology. Tree-Ring Res 69:3–13CrossRefGoogle Scholar
  49. van Oldenborgh GJ, Drijfhout S, van Ulden A, Haarsma R, Sterl A, Severijns C, Hazelleger W, Dijkstra H (2009) Western Europe is warming much faster than expected. Clim Past 5:1–12CrossRefGoogle Scholar
  50. Wigley TML, Jones PD (1987) England and Wales precipitation: a discussion of recent changes in variability and an update to 1985. J Climatol 7:231–246CrossRefGoogle Scholar
  51. Wigley TML, Lough JM, Jones PD (1984) Spatial patterns of precipitation in England and Wales and a revised, homogeneous England and Wales precipitation series. J Climatol 4:1–25CrossRefGoogle Scholar
  52. Wilson RJS, Miles D, Loader NJ, Melvin TM, Cunningham L, Cooper R, Briffa KR (2013) A millennial long March–July precipitation reconstruction for southern-central England. Clim Dyn 40:997–1017. doi: 10.1007/s00382-00012-01318-z CrossRefGoogle Scholar
  53. Woodley EJ, Loader NJ, McCarroll D, Young GHF, Robertson I, Heaton THE, Gagen MH (2012a) Estimating uncertainty in pooled stable isotope time-series from tree-rings. Chem Geol 294–295:243–248CrossRefGoogle Scholar
  54. Woodley EJ, Loader NJ, McCarroll D, Young GHF, Robertson I, Heaton THE, Gagen MH, Warham JO (2012b) High-temperature pyrolysis/gas chromatography/isotope ratio mass spectrometry: simultaneous measurement of the stable isotopes of oxygen and carbon in cellulose. Rapid Commun Mass Spectrom 26:109–114CrossRefGoogle Scholar
  55. Young GHF, McCarroll D, Loader NJ, Kirchhefer AJ (2010) A 500-year record of summer near-ground solar radiation from tree-ring stable carbon isotopes. Holocene 20:315–324. doi: 10.1177/0959683609351902 CrossRefGoogle Scholar
  56. Young GHF, Demmler JC, Gunnarson BE, Kirchhefer AJ, Loader NJ, McCarroll D (2011a) Age trends in tree ring growth and isotopic archives: a case study of Pinus sylvestris L. from northwestern Norway. Global Biogeochem Cy GB2020. doi: 10.1029/2010GB003913
  57. Young GHF, Loader NJ, McCarroll D (2011b) A large scale comparative study of stable carbon isotope ratios determined using on-line combustion and low-temperature pyrolysis techniques. Palaeogeogr Palaeoclimatol Palaoecol 300:23–28CrossRefGoogle Scholar
  58. Young GHF, McCarroll D, Loader NJ, Gagen M, Kirchhefer AJ, Demmler JC (2012a) Changes in atmospheric circulation and the Arctic Oscillation preserved within a millennial length reconstruction of summer cloud cover from northern Fennoscandia. Clim Dyn 39:495–507. doi: 10.1007/s00382-00011-01246-00383 CrossRefGoogle Scholar
  59. Young GHF, Bale RJ, Loader NJ, McCarroll D, Nayling N, Vousden N (2012b) Central England temperature since AD 1850: the potential of stable carbon isotopes in British oak trees to reconstruct past summer temperatures. J Quat Sci 27:606–614. doi: 10.1002/jqs.2554 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Giles H. F. Young
    • 1
    Email author
  • Neil J. Loader
    • 1
  • Danny McCarroll
    • 1
  • Roderick J. Bale
    • 2
  • Joanne C. Demmler
    • 1
  • Daniel Miles
    • 3
  • Nigel T. Nayling
    • 2
  • Katja T. Rinne
    • 4
  • Iain Robertson
    • 1
  • Camilla Watts
    • 1
    • 5
  • Matthew Whitney
    • 1
  1. 1.Department of Geography, College of ScienceSwansea UniversitySwanseaUK
  2. 2.Department of Archaeology, History and AnthropologyUniversity of Wales Trinity Saint DavidLampeter, CeredigionUK
  3. 3.Research Laboratory for Archaeology and the History of ArtOxford UniversityOxfordUK
  4. 4.Paul Scherrer InstituteVilligenSwitzerland
  5. 5.The National Botanic Garden of WalesLlanarthne, CarmarthenUK

Personalised recommendations