Advertisement

Climate Dynamics

, Volume 45, Issue 11–12, pp 3593–3607 | Cite as

Ocean versus atmosphere control on western European wintertime temperature variability

  • Ayako YamamotoEmail author
  • Jaime B. Palter
  • M. Susan Lozier
  • Michel S. Bourqui
  • Susan J. Leadbetter
Article

Abstract

Using a novel Lagrangian approach, we assess the relative roles of the atmosphere and ocean in setting interannual variability in western European wintertime temperatures. We compute sensible and latent heat fluxes along atmospheric particle trajectories backtracked in time from four western European cities, using a Lagrangian atmospheric dispersion model driven with meteorological reanalysis data. The material time rate of change in potential temperature and the surface turbulent fluxes computed along the trajectory show a high degree of correlation, revealing a dominant control of ocean–atmosphere heat and moisture exchange in setting heat flux variability for atmospheric particles en route to western Europe. We conduct six idealised simulations in which one or more aspects of the climate system is held constant at climatological values and these idealised simulations are compared with a control simulation, in which all components of the climate system vary realistically. The results from these idealised simulations suggest that knowledge of atmospheric pathways is essential for reconstructing the interannual variability in heat flux and western European wintertime temperature, and that variability in these trajectories alone is sufficient to explain at least half of the internannual flux variability. Our idealised simulations also expose an important role for sea surface temperature in setting decadal scale variability of air–sea heat fluxes along the Lagrangian pathways. These results are consistent with previous studies showing that air–sea heat flux variability is driven by the atmosphere on interannual time scales over much of the North Atlantic, whereas the SST plays a leading role on longer time scales. Of particular interest is that the atmospheric control holds for the integrated fluxes along 10-day back trajectories from western Europe on an interannual time scale, despite that many of these trajectories pass over the Gulf Stream and its North Atlantic Current extension, regions where ocean dynamics influence air–sea heat exchange even on a very short time scale.

Keywords

Air–sea interaction Lagrangian method Climate variability  

Notes

Acknowledgments

We would like to thank Y. Huang, T. M. Merlis, and B. Tremblay for their useful discussions and comments, and we gratefully acknowledge B. Dattore from NCEP for providing reanalysis data and A. Stohl and his team for making FLEXPART code available. Funding for this work was provided by the NSERC Discovery Program, FQRNT’s Programme Établissement de Nouveaux Chercheurs Universitaires, and Québec-Océan. We would also like to thank two anonymous reviewers who helped us to improve this paper.

References

  1. Alexander MA, Halimeda Kilbourne K, Nye JA (2014) Climate variability during warm and cold phases of the Atlantic Multidecadal Oscillation (AMO) 1871–2008. J Mar Syst 133:14–26. doi: 10.1016/j.jmarsys.2013.07.017 CrossRefGoogle Scholar
  2. Arguez A, O’Brien JJ, Smith SR (2009) Air temperature impacts over Eastern North America and Europe associated with low-frequency North Atlantic SST variability. Int J Climatol 29:1–10CrossRefGoogle Scholar
  3. Bjerknes J (1964) Atlantic air–sea interaction. In: Landsberg HE, Van Mieghem J (eds) Adv Geophys. Academic Press, New York, pp 1–82Google Scholar
  4. Blender R, Luksch U, Fraedrich K, Raible CC (2003) Predictability study of the observed and simulated European climate using linear regression. Quart J R Meteorol Soc 129:2299–2313. doi: 10.1256/qj.02.103 CrossRefGoogle Scholar
  5. Booth BBB, Dunstone NJ, Halloran PR, Andrews T, Bellouin N (2012) Aerosols implicated as a prime driver of twentieth-century North Atlantic climate variability. Nature 484(7393):228–232. doi: 10.1038/nature10946 CrossRefGoogle Scholar
  6. Buckley MW, Ponte RM, Forget G, Heimbach P (2014) Low-frequency SST and upper-ocean heat content variability in the North Atlantic. J Clim 27:4996–5018. doi: 10.1175/JCLI-D-13-00316.1 CrossRefGoogle Scholar
  7. Decker M, Brunke MA, Wang Z, Sakaguchi K, Zeng X, Bosilovich MG (2012) Evaluation of the reanalysis products from GSFC, NCEP, and ECMWF using flux tower observations. J Clim 25(6):1916–1944. doi: 10.1175/JCLI-D-11-00004.1 CrossRefGoogle Scholar
  8. Dong B, Sutton RT, Woollings T, Hodges K (2013) Variability of the North Atlantic summer storm track: mechanisms and impacts on European climate. Environ Res Lett 8(3):034–037. doi: 10.1088/1748-9326/8/3/034037 CrossRefGoogle Scholar
  9. Dong S, Kelly KA (2004) Heat budget in the gulf stream region: the importance of heat storage and advection. J Phys Oceanogr 34(5):1214–1231CrossRefGoogle Scholar
  10. Dong S, Hautala SL, Kelly KA (2007) Interannual variations in upper-ocean heat content and heat transport convergence in the Western North Atlantic. J Phys Oceanogr 37(11):2682–2697. doi: 10.1175/2007JPO3645.1 CrossRefGoogle Scholar
  11. Enfield DB, Mestas-Nunez AM, Trimble PJ (2001) The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental US. Geophys Res Lett 28(10):2077–2080CrossRefGoogle Scholar
  12. Fairall CW, Bradley EF, Rogers DP, Edson JB, Young GS (1996) Bulk parameterization of air–sea fluxes for tropical ocean–global atmosphere coupled-ocean atmosphere response experiment difference relative analysis. J Geophys Res 101:3747–3764CrossRefGoogle Scholar
  13. Fairall CW, Bradley EF, Hare JE, Grachev AA, Edson JB (2003) Bulk parameterization of air–sea fluxes: updates and verification for the COARE algorithm. J Clim, 571–591Google Scholar
  14. Gámiz-Fortis SR, Esteban-Parra MJ, Pozo-Vázquez D, Castro-Díez Y (2011) Variability of the monthly European temperature and its association with the Atlantic sea–surface temperature from interannual to multidecadal scales. Int J Climatol 31(14):2115–2140. doi: 10.1002/joc.2219 CrossRefGoogle Scholar
  15. Gulev SK, Latif M, Keenlyside N, Park W, Koltermann KP (2013) North Atlantic Ocean control on surface heat flux on multidecadal timescales. Nature 499(7459):464–467. doi: 10.1038/nature12268 CrossRefGoogle Scholar
  16. Häkkinen S, Rhines PB, Worthen DL (2011) Atmospheric blocking and Atlantic multidecadal ocean variability. Science (New York, NY) 334(6056):655–659. doi: 10.1126/science.1205683 CrossRefGoogle Scholar
  17. Hodges KI, Lee RW, Bengtsson L (2011) A comparison of extratropical cyclones in recent reanalyses ERA-Interim, NASA MERRA, NCEP CFSR, and JRA-25. J Clim 24(18):4888–4906. doi: 10.1175/2011JCLI4097.1 CrossRefGoogle Scholar
  18. Johns WE, Baringer MO, Beal LM, Cunningham SA, Kanzow T, Bryden HL, Hirschi JJM, Marotzke J, Meinen CS, Shaw B, Curry R (2011) Continuous, array-based estimates of Atlantic Ocean heat transport at 26.5N. J Clim 24(10):2429–2449. doi: 10.1175/2010JCLI3997.1 CrossRefGoogle Scholar
  19. Junge MM, Stephenson DB (2003) Mediated and direct effects of the North Atlantic Ocean on winter temperatures in northwest Europe. Int J Climatol 23(3):245–261. doi: 10.1002/joc.867 CrossRefGoogle Scholar
  20. Kushnir Y (1994) Interdecadal variations in North Atlantic sea surface temperature and associated atmospheric conditions. J Clim 7:141–157CrossRefGoogle Scholar
  21. Maryon RH (1998) Determining cross-wind variance for low frequency wind meander. Atmos Environ 32(2):115–121CrossRefGoogle Scholar
  22. Maury MF (1860) The physical geography of the sea, and its meteorology. Harper & Brothers, New YorkGoogle Scholar
  23. McCarthy G, Frajka-Williams E, Johns WE, Baringer MO, Meinen CS, Bryden HL, Rayner D, Duchez A, Roberts C, Cunningham SA (2012) Observed interannual variability of the Atlantic meridional overturning circulation at 26.5N. Geophys Res Lett 39(19). doi: 10.1029/2012GL052933
  24. Orlanski I (1998) Poleward deflection of storm tracks. J Atmos Sci 55:2577–2602CrossRefGoogle Scholar
  25. Peixoto JP, Oort AH (1992) Physics of climate. American Institute of Physics, New YorkGoogle Scholar
  26. Rhines PB, Häkkinen S, Josey SA (2008) Is oceanic heat transport significant in the climate system? In: Dickson RR, Meincke J, Rhines PB (eds) Arctic–Subarctic ocean fluxes: defining the role of the Northern Seas in climate. Springer, New York chap 4Google Scholar
  27. Rudeva I, Gulev SK (2011) Composite analysis of North Atlantic extratropical cyclones in NCEP–NCAR reanalysis data. Mon Weather Rev 139(5):1419–1446. doi: 10.1175/2010MWR3294.1 CrossRefGoogle Scholar
  28. Saha S, Moorthi S, Pan HL, Wu X, Wang JW, Nadiga S, Tripp P, Kistler R, Woollen J, Behringer D, Liu H, Stokes D, Grumbine R, Gayno G, Wang J, Hou YT, Chuang HY, Juang HMH, Sela J, Iredell M, Treadon R, Kleist D, Van Delst P, Keyser D, Derber J, Ek M, Meng J, Wei H, Yang R, Load S, Van Den Dool H, Kumar A, Wang W, Long C, Chelliah M, Xue Y, Huang B, Schemm JK, Ebisuzaki W, Lin R, Xie P, Chen M, Zhou S, Higgins W, Zou CZ, Liu Q, Chen Y, Han Y, Cucurull L, Reynolds RW, Rutledge G, Goldberg M (2010) The NCEP climate forecast system reanalysis. Bull Am Meteorol Soc 91:1015–1057. doi: 10.1175/2010Bams3001.1 CrossRefGoogle Scholar
  29. Seager R, Battisti DS, Yin J, Gordon N, Naik N, Clement AC, Cane MA (2002) Is the Gulf Stream responsible for Europe’s mild winters? Quart J R Meteorol Soc 128(586):2563–2586. doi: 10.1256/qj.01.128 CrossRefGoogle Scholar
  30. Stohl A, Thomson DJ (1999) A density correction for Lagrangian particle dispersion models. Bound-Layer Meteorol 90:155–167CrossRefGoogle Scholar
  31. Stohl A, Forster C, Frank A, Seibert P, Wotawa G (2005) Technical note: The Lagrangian particle dispersion model FLEXPART version 6.2. Atmos Chem Phys 5:2461–2474CrossRefGoogle Scholar
  32. Sutton RT, Dong B (2012) Atlantic Ocean influence on a shift in European climate in the 1990s. Nat Geosci 5(11):788–792. doi: 10.1038/ngeo CrossRefGoogle Scholar
  33. Tilinina N, Gulev SK, Rudeva I, Koltermann P (2013) Comparing cyclone life cycle characteristics and their interannual variability in different reanalyses. J Clim 26(17):6419–6438. doi: 10.1175/JCLI-D-12-00777.1 CrossRefGoogle Scholar
  34. Trenberth KE, Caron JM (2001) Estimates of meridional atmosphere and ocean heat transports. J Clim 14:3433–3443CrossRefGoogle Scholar
  35. Vogelezang DHP, Holtslag AAM (1996) Evaluation and model impacts of alternative boundary-layer height formulations. Bound-Layer Meteorol 81:245–269CrossRefGoogle Scholar
  36. Woollings T, Gregory JM, Pinto JG, Reyers M, Brayshaw DJ (2012) Response of the North Atlantic storm track to climate change shaped by ocean-atmosphere coupling. Nat Geosci 5(5):313–317. doi: 10.1038/ngeo1438 CrossRefGoogle Scholar
  37. Wunsch C, Heimbach P (2007) Practical global oceanic state estimation. Phys D 230(1–2):197–208. doi: 10.1016/j.physd.2006.09.040 CrossRefGoogle Scholar
  38. Yasuda T, Hanawa K (1997) Decadal changes in the mode waters in the midlatitude North Pacific. J Phys Oceanogr 27(6):858–870CrossRefGoogle Scholar
  39. Yulaeva E, Schneider N, Pierce DW, Barnett TP (2001) Modeling of North Pacific climate variability forced by oceanic heat flux anomalies. J Clim 14:4027–4046CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Ayako Yamamoto
    • 1
    Email author
  • Jaime B. Palter
    • 1
  • M. Susan Lozier
    • 2
  • Michel S. Bourqui
    • 1
    • 3
    • 4
  • Susan J. Leadbetter
    • 5
  1. 1.Department of Atmospheric and Oceanic SciencesMcGill UniversityMontrealCanada
  2. 2.Division of Earth and Ocean Sciences Nicholas School of the EnvironmentDuke UniversityDurhamUSA
  3. 3.Dr Bourqui - Atmospheric and Climate Sciences ConsultingZurichSwitzerland
  4. 4.Department of PhysicsUniversité de MontréalMontrealCanada
  5. 5.Met OfficeExeterUK

Personalised recommendations