Climate Dynamics

, Volume 45, Issue 11–12, pp 3493–3511 | Cite as

Land-sea warming contrast: the role of the horizontal energy transport

  • Olivier GeoffroyEmail author
  • David Saint-Martin
  • Aurore Voldoire


In this study we investigate the role of the mechanisms at play in the magnitude of the land-sea warming contrast and its intermodel spread in the fifth coupled models intercomparison project (CMIP5) simulations. In this aim, an energy-balance model (EBM), with one box representing the land area and two other boxes the near-surface and the deep ocean, is developed. In particular, a simple parameterization of the horizontal energy transport (HET) change between these two regions is proposed. The EBM is shown to capture the variation of the land and the ocean temperature responses and of the land-sea warming ratio in different idealized climate change experiments. By using this framework, we first show that the land-sea warming contrast is explained by the asymmetry in the strength of the HET between the land and ocean and not by land-sea differences in radiative feedbacks. Then we use a method of analysis of variance to infer the contributors to the intermodel spread in the land-sea warming ratio of climate models participating to CMIP5. The main contributor is found to be the HET with a contribution of about 70 %. Finally, our results suggest that the asymmetric character of the HET dependency to the land and the ocean temperature responses may be primarily explained by the land-sea differences in surface specific humidity change for a given temperature change.


Land-sea contrast Horizontal energy transport Forcing adjustment Radiative feedbacks Intermodel spread  Energy balance model Climate sensitivity 



We gratefully thank two anonymous reviewers for their constructive comments and suggestions that helped to improve the manuscript. We also thank Laura Watson for comments on the manuscript and Bjorn Stevens for an inspiring discussion on this topic. This work was supported by the Project MORDICUS. We acknowledge the World Climate Research Programme's Working Group on Coupled Modelling, which is responsible for CMIP, and the U.S. Department of Energy's Program for Climate Model Diagnosis and Intercomparison which provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals. We thank the climate modeling groups for producing and making available their model output.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Bates JR (1999) A dynamical stabilizer in the climate system: a mechanism suggested by a simple model. Tellus A 51:349–372CrossRefGoogle Scholar
  2. Bates JR (2007) Some considerations of the concept of climate feedback. Q J R Meteorol Soc 133:545–560CrossRefGoogle Scholar
  3. Beltrami H, Smerdon J, Pollack H, Huang S (2002) Continental heat gain in the global climate system. Geophys Res Lett 29:1167CrossRefGoogle Scholar
  4. Boer GJ, Yu B (2003) Climate sensitivity and response. Clim Dyn 20:415–429Google Scholar
  5. Byrne MP, O’Gorman PA (2013a) Land-ocean warming contrast over a wide range of climates: convective quasi-equilibrium theory and idealized simulations. J Clim 26:4000–4016CrossRefGoogle Scholar
  6. Byrne MP, O’Gorman PA (2013b) Link between land-ocean warming contrast and surface relative humidities in simulations with coupled climate models. Geophys Res Lett 40:5223–5227CrossRefGoogle Scholar
  7. Compo GP, Sardeshmukh PD (2009) Oceanic influences on recent continental warming. Clim Dyn 32:333–342CrossRefGoogle Scholar
  8. Crook JA, Forster PM, Stuber N (2011) Spatial patterns of modeled climate feedback and contributions to temperature response and polar amplification. J Clim 24:3575–3592CrossRefGoogle Scholar
  9. Dommenget D (2009) The ocean’s role in continental climate variability and change. J Clim 22:4939–4952CrossRefGoogle Scholar
  10. Dommenget D (2012) Comments on the relationship between land-ocean surface temperature contrast and radiative forcing. J Clim 25:3437–3440CrossRefGoogle Scholar
  11. Drost F, Karoly D, Braganza K (2012) Communicating global climate change using simple indices: an update. Clim Dyn 39:989–999CrossRefGoogle Scholar
  12. Fasullo JT (2010) Robust land-ocean contrasts in energy and water cycle feedbacks. J Clim 23:4677–4693CrossRefGoogle Scholar
  13. Forster PM, Blackburn M, Glover R, Shine KP (2000) An examination of climate sensitivity for idealised climate change experiments in an intermediate general circulation model. Clim Dyn 16:833–849CrossRefGoogle Scholar
  14. Geoffroy O, Saint-Martin D, Ribes A (2012) Quantifying the sources of spread in climate change experiments. Geophys Res Lett 39:L24703Google Scholar
  15. Geoffroy O, Saint-Martin D, Olivié DJL, Voldoire A, Bellon G, Tytéca S (2013a) Transient climate response in a two-layer energy-balance model. Part I : analytical solution and parameter calibration using CMIP5 AOGCM experiments. J Clim 26:1841–1857CrossRefGoogle Scholar
  16. Geoffroy O, Saint-Martin D, Bellon G, Voldoire A, Olivié DJL, Tytéca S (2013b) Transient climate response in a two-layer energy-balance model. Part II : representation of the efficacy of deep-ocean heat uptake and validation for CMIP5 AOGCMs. J Clim 26:1859–1876CrossRefGoogle Scholar
  17. Geoffroy O, Saint-Martin D, Voldoire A, Salas-Mélia D, Sénési S (2014a) Adjusted radiative forcing and global radiative feedbacks in CNRM-CM5, a closure of the partial decomposition. Clim Dyn 42:1807–1818CrossRefGoogle Scholar
  18. Geoffroy O, Saint-Martin D (2014b) Pattern decomposition of the transient climate response. Tellus A 66:23393CrossRefGoogle Scholar
  19. Gregory JM (2000) Vertical heat transports in the ocean and their effect on time-dependent climate change. Clim Dyn 16:505–515CrossRefGoogle Scholar
  20. Gregory JM et al (2004) A new method for diagnosing radiative forcing and climate sensitivity. Geophys Res Lett 31:L03205Google Scholar
  21. Gregory JM, Webb MJ (2008) Tropospheric adjustment induces a cloud component in \({\rm CO}_{2}\) forcing. J Clim 21:58–71CrossRefGoogle Scholar
  22. Hansen J, Lacis A, Rind D, Russell G, Stone P, Fung I, Ruedy R, Lerner J (1984) Climate sensitivity: analysis of feedback mechanisms. In: Hansen JE, Takahashi T (eds) Climate processes and climate sensitivity, AUG Geophysical Union Monograph 29, Maurice Ewing, vol 5. American Geophysical Union, Washington D.C, pp 130–163Google Scholar
  23. Hansen J, Sato M, Ruedy R (1997) Radiative forcing and climate response. J Geophys Res 102:6831–6864CrossRefGoogle Scholar
  24. Hansen J et al (2005) Efficacy of climate forcings. J Geophys Res 110:D18104CrossRefGoogle Scholar
  25. Held IM, Soden BJ (2006) Robust responses of the hydrological cycle to global warming. J Clim 19:5686–5699CrossRefGoogle Scholar
  26. Held IM, Winton M, Takahashi K, Delworth T, Zeng F, Vallis GK (2010) Probing the fast and slow components of global warming by returning abruptly to preindustrial forcing. J Clim 23:2418–2427CrossRefGoogle Scholar
  27. Huntingford C, Cox PM (2000) An analogue model to derive additional climate change scenarios from existing GCM simulations. Clim Dyn 16:575–586CrossRefGoogle Scholar
  28. Hwang Y-T, Frierson DMW (2010) Increasing atmospheric poleward energy transport with global warming. Geophys Res Lett 37:L24807Google Scholar
  29. Joshi MM, Gregory JM, Webb MJ, Sexton DMH, Johns TC (2008) Mechanisms for the land/sea warming contrast exhibited by simulations of climate change. Clim Dyn 30:455–465CrossRefGoogle Scholar
  30. Joshi MM, Lambert FH, Webb MJ (2013) An explanation for the difference between twentieth and twenty-first century land-sea warming ratio in climate models. Clim Dyn 41:1853–1869CrossRefGoogle Scholar
  31. Lambert FH, Chiang JCH (2007) Control of land-ocean temperature contrast by ocean heat uptake. Geophys Res Lett 34:L13704Google Scholar
  32. Lambert FH, Webb MJ, Joshi MM (2011) The relationship between land-ocean surface temperature contrast and radiative forcing. J Clim 24:3239–3256CrossRefGoogle Scholar
  33. Manabe S, Stouffer RJ, Spelman MJ, Bryan K (1991) Transient responses of a coupled ocean–atmosphere model to gradual changes of atmospheric \({\rm CO}_{2}\). Part I: annual mean response. J Clim 4:785–818CrossRefGoogle Scholar
  34. Manabe S, Spelman MJ, Stouffer RJ (1992) Transient responses of a coupled ocean–atmosphere model to gradual changes of atmospheric \({\rm CO}_{2}\). Part II: seasonal response. J Clim 5:105–126CrossRefGoogle Scholar
  35. Rose BEJ, Armour KC, Battisti DS, Feldl N, Koll DDB (2014) The dependence of transient climate sensitivity and radiative feedbacks on the spatial pattern of ocean heat uptake. Geophys Res Lett 41:1071–1078CrossRefGoogle Scholar
  36. Sherwood S, Bony S, Boucher O, Bretherton CS, Forster P, Gregory J, Stevens B (2014) Adjustments in the forcing-feedback framework for understanding climate change. Bull Am Meteorol Soc (in press). doi: 10.1175/BAMS-D-13-00167.1
  37. Sobel AH, Bretherton CS (2000) Modeling tropical precipitation in a single column. J Clim 13:4378–4392CrossRefGoogle Scholar
  38. Sutton RT, Dong BW, Gregory JM (2007) Land-sea warming ratio in response to climate change: IPCC AR4 model results and comparison with observations. Geophys Res Lett 34:L02701Google Scholar
  39. Taylor KE, Stouffer RJ, Meehl GA (2011) An overview of CMIP5 and the experiment design. Am Meteorol Soc Bull. doi: 10.1175/BAMS-D-11-00094.1
  40. Vial J, Dufresne J-L, Bony S (2014) On the interpretation of inter-model spread in CMIP5 climate sensitivity estimates. Clim Dyn 41:3339–3362CrossRefGoogle Scholar
  41. Voldoire A, Sanchez-Gomez E, Salas y Mélia D, Decharme B, Cassou C, Sénési S, Valcke S, Beau I, Alias A, Chevallier M, Déqué M, Deshayes J, Douville H, Fernandez E, Madec G, Maisonnave E, Moine M-P, Planton S, Saint-Martin D, Szopa S, Tyteca S, Alkama R, Belamari S, Braun A, Coquart L, Chauvin F (2013) The CNRM-CM5.1 global climate model: description and basic evaluation. Clim Dyn 40:2091–2121CrossRefGoogle Scholar
  42. Winton M, Takahashi K, Held IM (2010) Importance of ocean heat uptake efficacy to transient climate change. J Clim 23:2333–2344CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Olivier Geoffroy
    • 1
    Email author
  • David Saint-Martin
    • 1
  • Aurore Voldoire
    • 1
  1. 1.CNRM/GAME, Météo-France/CNRSToulouseFrance

Personalised recommendations