Skip to main content
Log in

Two key parameters for the El Niño continuum: zonal wind anomalies and Western Pacific subsurface potential temperature

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Different types of El Niño (EN) events have recently been discussed. Based on NCEP–NOAA reanalysis data this analysis explores a number of key parameters that cause a range of EN types over the period 1980–2013. EN events are divided into three types depending on the spatial and temporal evolution of the sea surface temperature anomalies (SSTA): Central Pacific (CPEN), Eastern Pacific (EPEN), and Hybrid (HBEN). We find that EN is a continuous spectrum of events with CPEN and EPEN as the end members. This spectrum mainly depends on two key parameters: the 130°E–160°E Western Pacific 5–250 m subsurface oceanic potential temperature anomaly about 1 year before the EN peak (typically January and February), and the 140°E–160°W cumulative zonal wind anomaly (ZWA) between onset and peak of the EN event. Using these two parameters, about 70 % of the total variance of the maximum SSTA realised in different Niño regions can already be explained up to 6 months before the maximum SSTA occurs. This offers a rather simple potential for ENSO prediction. A necessary condition for the evolution of an EPEN, the Western Pacific is in the recharged state. Strong and sustained westerly wind anomalies in Western Pacific can then trigger a Kelvin wave propagating to the eastern Pacific. Both parameters, potential temperature and zonal wind anomaly, constructively interfere. For a CPEN, these parameters are much less important. Kelvin wave propagation is not involved in the evolution of the event. Instead, the Central Pacific warming is caused locally by a zonal advection feedback and local air–sea interaction as already demonstrated in previous studies. The HBEN occurs when both parameters interfere in different ways: (1) Western Pacific is weakly charged, but strong westerly ZWA are observed that reduce the equatorial upwelling in the Central Pacific while the triggered Kelvin wave is too weak to have a significant effect; (2) Western Pacific is strongly charged but only weak westerly ZWA develop, so that the resulting Kelvin wave cannot fully extend into the eastern-most Pacific.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • An S-I, Jin F-F (2001) Collective Role of thermocline and zonal advective feedbacks in the enso mode. J Clim 14:3421–3432

    Article  Google Scholar 

  • Ashok K, Behera SK, Rao SA, Weng H, Yamagata T (2007) El Niño Modoki and its possible teleconnection. J Geophys Res 112(C11):C11007. doi:10.1029/2006JC003798

    Article  Google Scholar 

  • Battisti DS, Hirst AC (1989) Interannual variability in a tropical atmosphere-ocean model: influence of the basic state, ocean geometry and nonlinearity. J Clim 46:1687–1712

    Google Scholar 

  • Behringer D, Xue Y (2004) Evaluation of the global ocean data assimilation system at NCEP: the Pacific Ocean. Eighth symposium on integrated observing and assimilation systems for atmosphere, oceans, and land surface, AMS 84th annual meeting, Washington State Convention and Trade Center, Seattle, Washington, (January), 11–15

  • Bergman JW, Hendon HH, Weickmann KM (2001) Intraseasonal air–sea interactions at the onset of El Nino. J Clim 14:1702–1719

    Article  Google Scholar 

  • Cai W, Borlace S, Lengaigne M, van Rensch P, Collins M, Vecchi G, Jin FF (2014) Increasing frequency of extreme El Niño events due to greenhouse warming. Nat Clim Change 4(2):111–116. doi:10.1038/nclimate2100

    Article  Google Scholar 

  • Chen D, Cane MA, Kaplan A, Zebiak SE, Huang D, Cane MA (2004) Predictability of El Niño over the past 148 years. Nature 428(6984):733–736. doi:10.1038/nature02439

    Article  Google Scholar 

  • Chen S, Chen W, Yu B, Graf H.-F (2013) Modulation of the seasonal footprinting mechanism by the boreal spring Arctic Oscillation. Geophys Res Lett. doi:10.1002/2013GL058628

  • Compo GP, Whitaker JS, Sardeshmukh PD, Matsui N, Allan RJ, Yin X, Worley SJ (2011) The twentieth century reanalysis project. Q J R Meteorol Soc 137(654):1–28. doi:10.1002/qj.776

    Article  Google Scholar 

  • England MH, Mcgregor S, Spence P, Meehl GA, Timmermann A, Cai W, Santoso A (2014) Recent intensification of wind-driven circulation in the Pacific and the Ongoing Warming Hiatus. Nat Clim Change. doi:10.1038/NCLIMATE2106

  • Fedorov AV (2002) The response of the coupled tropical ocean-atmosphere to westerly wind bursts. Q J R Meteorol Soc 128:1–23

    Article  Google Scholar 

  • Fedorov AV, Hu S, Lengaigne M, Guilyardi E (2014) The impact of westerly wind bursts and ocean initial state on the development, and diversity of El Niño events. Clim Dyn. doi:10.1007/s00382-014-2126-4

  • Giese BS, Ray S (2011) El Niño variability in simple ocean data assimilation (SODA), 1871–2008. J Geophys Res 116(C2):C02024. doi:10.1029/2010JC006695

    Google Scholar 

  • Graf H-F (1986) El-Nino southern oscillation and northern hemispheric temperature. Gerlands Beitr Geophysik 1:63–75

    Google Scholar 

  • Graf H-F, Zanchettin D (2012) Central Pacific El Niño, the “subtropical bridge”, and Eurasian climate. J Geophys Res 117(D1):D01102. doi:10.1029/2011JD016493

    Google Scholar 

  • Grose MR, Brown JN, Narsey S, Brown JR, Murphy BF, Langlais C, Irving DB (2014) Assessment of the CMIP5 global climate model simulations of the western tropical Pacific climate system and comparison to CMIP3. Int J Climatol 34:3382–3399. doi:10.1002/joc.3916

    Article  Google Scholar 

  • Guilyardi E (2006) El Niño–mean state–seasonal cycle interactions in a multi-model ensemble. Clim Dyn 26(4):329–348. doi:10.1007/s00382-005-0084-6

    Article  Google Scholar 

  • Guilyardi E, Wittenberg A, Fedorov A, Collins M, Wang C, Capotondi A, Van Oldenborgh GJ, Stockdale T (2009) Understanding El Niño in ocean-atmosphere general circulation models: progress and challenges. Bull Amer Meteor 90(3):325–340. doi:10.1175/2008BAMS2387.1

    Article  Google Scholar 

  • Hong C-C, Wu Y-K, Li T, Chang C-C (2013) The climate regime shift over the Pacific during 1996/1997. Clim Dyn 43(1–2):435–446. doi:10.1007/s00382-013-1867-9

    Google Scholar 

  • Hu S, Fedorov AV, Lengaigne M, Guilyardi E (2014) The impact of westerly wind bursts on the diversity and predictability of El Niño events: an ocean energetics perspective. Geophys Res Lett 41:4654–4663. doi:10.1002/2013GL058954.Received

    Google Scholar 

  • Jin F-F (1997) An equatorial ocean recharge paradigm for ENSO. Part I: conceptual model. J Atmos Sci 54:811–829

    Article  Google Scholar 

  • Jin F, An S (1999) Within the equatorial ocean recharge oscillator model for ENSO. Geophys Res Lett 26(19):2989–2992

    Article  Google Scholar 

  • Johnson NC (2013) How many ENSO flavors can we distinguish? J Clim 26(13):4816–4827. doi:10.1175/JCLI-D-12-00649.1

    Article  Google Scholar 

  • Kao H-Y, Yu J-Y (2009) Contrasting eastern-pacific and central-pacific types of ENSO. J Clim 22(3):615–632. doi:10.1175/2008JCLI2309.1

    Article  Google Scholar 

  • Kessler WS (2002) Is ENSO a cycle or a series of events? Geophys Res Lett 29(23):2125. doi:10.1029/2002GL015924

    Article  Google Scholar 

  • Kim ST, Yu J.-Y (2012) The two types of ENSO in CMIP5 models. Geophys Res Lett 39(11). doi:10.1029/2012GL052006

  • Kug J-S, Jin F-F, An S-I (2009) Two types of El Niño events: cold tongue El Niño and warm pool El Niño. J Clim 22(6):1499–1515. doi:10.1175/2008JCLI2624.1

    Article  Google Scholar 

  • Lian T, Chen D (2012) An evaluation of rotated EOF analysis and its application to tropical pacific SST variability. J Clim 25(15):5361–5373. doi:10.1175/JCLI-D-11-00663.1

    Article  Google Scholar 

  • Mcgregor S, Timmermann A, Stuecker MF, England MH, Merrifield M (2014) Recent Walker circulation strengthening and Pacific cooling amplified by Atlantic warming. Nat Clim Change 4. doi:10.1038/NCLIMATE2330

  • McPhaden MJ, Zebiak SE, Glantz MH (2006) ENSO as an integrating concept in earth science. Science (New York, NY) 314(5806):1740–1745. doi:10.1126/science.1132588

    Article  Google Scholar 

  • Meinen CS, McPhaden MJ (2000) Observations of warm water volume changes in the equatorial pacific and their relationship to El Nino and La Nina. J Clim 13:3551–3559. doi:10.1175/1520-0442(2000)013<3551:OOWWVC>2.0.CO;2

    Article  Google Scholar 

  • Pascolini-Campbell M, Zanchettin D, Bothe O, Timmreck C, Matei D, Jungclaus JH, Graf H-F (2014) Toward a record of Central Pacific El Niño events since 1880. Theor Appl Climatol. doi:10.1007/s00704-014-1114-2

    Google Scholar 

  • Rao SA, Dhakate AR, Saha SK, Mahapatra S, Chaudhari HS, Pokhrel S, Sahu SK (2011) Why is Indian Ocean warming consistently? Clim Change 110(3–4):709–719. doi:10.1007/s10584-011-0121-x

    Google Scholar 

  • Reynolds RW, Rayner NA, Smith TM, Stokes DC, Wang W (2002) An improved in situ and satellite SST analysis for climate. J Clim 15:1609–1625

    Article  Google Scholar 

  • Santoso A, McGregor S, Jin F-F, Cai W, England MH, An S-I, Guilyardi E (2013) Late-twentieth-century emergence of the El Niño propagation asymmetry and future projections. Nature 504:126. doi:10.1038/nature12683

    Article  Google Scholar 

  • Schneider EK, Huang B, Shukla J (1995) Ocean wave dynamics and El Nino. J Clim 8:2415–2439

    Article  Google Scholar 

  • Suarez MJ, Schopf PS (1988) A delayed action oscillator for ENSO. J Atmos Sci 45:3283–3287

    Article  Google Scholar 

  • Takahashi K, Montecinos A, Goubanova K, Dewitte B (2011) ENSO regimes: reinterpreting the canonical and Modoki El Nio. Geophys Res Lett 38(May):1–5. doi:10.1029/2011GL047364

    Google Scholar 

  • Vecchi GA, Soden BJ, Wittenberg AT, Held IM, Leetmaa A, Harrison MJ (2006) Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing. Nature 441(7089):73–76. doi:10.1038/nature04744

    Article  Google Scholar 

  • Vimont DJ, Wallace JM, Battisti DS (2003) The seasonal footprinting mechanism in the Pacific: implications for ENSO. J Clim 16:2668–2675

    Article  Google Scholar 

  • Yeh S-W, Kug J-S, Dewitte B, Kwon M-H, Kirtman BP, Jin F-F (2009) El Niño in a changing climate. Nature 461(7263):511–514. doi:10.1038/nature08316

    Article  Google Scholar 

  • Yeh S-W, Kug J-S, An S-I (2014) Recent progress on two types of El Niño: observations, dynamics, and future changes. Asia Pac J Atmos Sci 50(1):69–81. doi:10.1007/s13143-014-0028-3

    Article  Google Scholar 

  • Yu J-Y, Kim ST (2010) Three evolution patterns of Central-Pacific El Niño. Geophys Res Lett 37(8). doi:10.1029/2010GL042810

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andy Wang-Chun Lai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lai, A.WC., Herzog, M. & Graf, HF. Two key parameters for the El Niño continuum: zonal wind anomalies and Western Pacific subsurface potential temperature. Clim Dyn 45, 3461–3480 (2015). https://doi.org/10.1007/s00382-015-2550-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-015-2550-0

Keywords

Navigation