Skip to main content

Stochastic atmospheric perturbations in the EC-Earth3 global coupled model: impact of SPPT on seasonal forecast quality

Abstract

Atmospheric model uncertainties at a seasonal time scale can be addressed by introducing stochastic perturbations in the model formulation. In this paper the stochastically perturbed parameterization tendencies (SPPT) technique is activated in the atmospheric component of the EC-Earth global coupled model and the impact on seasonal forecast quality is assessed, both at a global scale and focusing on the Tropical Pacific region. Re-forecasts for winter and summer seasons using two different settings for the perturbation patterns are evaluated and compared to a reference experiment without stochastic perturbations. We find that SPPT tends to increase the systematic error of the model sea-surface temperature over most regions of the globe, whereas the impact on precipitation and sea-level pressure is less clear. In terms of ensemble spread, larger-scale perturbation patterns lead to a greater increase in spread and in the model spread-skill ratio in a system that is overconfident. Over the Tropical Pacific, improvements in the representation of key processes associated with ENSO are highlighted. The evaluation of probabilistic re-forecasts shows that SPPT improves their reliability. Finally, we discuss the limitations to this study and future prospects with EC-Earth.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Alessandri A, Borrelli A, Navarra A, Arribas A, Déqué M, Rogel P, Weisheimer A (2011) Evaluation of probabilistic quality and value of the ENSEMBLES multimodel seasonal forecasts: comparison with DEMETER. Mon Weather Rev 139:581–607. doi:10.1175/2010MWR3417.1

    Article  Google Scholar 

  2. Anderson DLT (2008) Overview of seasonal forecasting. In: Troccoli A, Harrison M, Anderson DLT, Mason SJ (eds) Seasonal climate: forecasting and managing risk. Springer Academic Publishers, Dordrecht, pp 45–66

    Chapter  Google Scholar 

  3. Batté L, Déqué M (2011) Seasonal predictions of precipitation over Africa using coupled ocean-atmosphere general circulation models: skill of the ENSEMBLES project multimodel ensemble forecasts. Tellus 63A:283–299. doi:10.1111/j.1600-0870.2010.00493.x

    Article  Google Scholar 

  4. Berner J, Doblas-Reyes FJ, Palmer TN, Shutts G, Weisheimer A (2008) Impact of a quasi-stochastic cellular automaton backscatter scheme on the systematic error and seasonal prediction skill of a global climate model. Philos Trans R Soc Lond A 366(1875):2559–2577. doi:10.1098/rsta.2008.0033

    Article  Google Scholar 

  5. Berner J, Jung T, Palmer TN (2012) Systematic model error: the impact of increased horizontal resolution versus improved stochastic and deterministic parameterizations. J Clim 25:4946–4962. doi:10.1175/JCLI-D-11-00297.1

    Article  Google Scholar 

  6. Brier GW (1950) Verification of forecasts expressed in terms of probability. Mon Weather Rev 78:1–3

    Article  Google Scholar 

  7. Buizza R, Miller M, Palmer TN (1999) Stochastic representation of model uncertainties in the ECMWF ensemble prediction system. Q J R Meteorol Soc 125:2887–2908

    Article  Google Scholar 

  8. Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot L, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L et al (2011) The ERA-interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597. doi:10.1002/qj.828

    Article  Google Scholar 

  9. Doblas-Reyes FJ, Pavan V, Stephenson DB (2003) The skill of multi-model seasonal forecasts of the wintertime North Atlantic Oscillation. Clim Dyn 21:501–514. doi:10.1007/s00382-003-0350-4

    Article  Google Scholar 

  10. Doblas-Reyes FJ, Hagedorn R, Palmer TN (2005) The rationale behind the success of multi-model ensembles in seasonal forecasting–II. Calibration and combination. Tellus 57A:234–252

    Article  Google Scholar 

  11. Doblas-Reyes FJ, Weisheimer A, Déqué M, Keenlyside N, MacVean M, Murphy JM, Rogel P, Smith D, Palmer TN (2009) Addressing model uncertainty in seasonal and annual dynamical ensemble forecasts. Q J R Meteorol Soc 135:1538–1559. doi:10.1002/qj.464

    Article  Google Scholar 

  12. Ferry N, Parent L, Garric G, Barnier B, Jourdain N, the Mercator Ocean team (2010) Mercator global eddy permitting ocean reanalysis GLORYS1V1: description and results. Quarterly Newsletter 36, Mercator Ocean

  13. Fichefet T, Morales Maqueda M (1997) Sensitivity of a global sea ice model to the treatment of ice thermodynamics and dynamics. J Geophys Res 102:12,609–12,646

    Article  Google Scholar 

  14. Hagedorn R, Doblas-Reyes FJ, Palmer TN (2005) The rationale behind the success of multi-model ensembles in seasonal forecasting–I. Basic concept. Tellus 57A:219–233

    Article  Google Scholar 

  15. Hazeleger W, Severijns C, Semmler T, Stefanescu S, Yang S, Wang X, Wyser K, Dutra E, Baldasano J, Bintanja R, Bougeault P, Caballero R, Ekman A, Christensen J, van den Hurk B, Jimenez P, Jones C, Kallberg P, Koenigk T, McGrath R, Miranda P, van Noije T, Palmer T, Parodi J, Schmith T, Selten F, Storelvmo T, Sterl A, Tapamo H, Vancoppenolle M, Viterbo P, Willén U (2010) EC-Earth: a seamless earth-system prediction approach in action. Bull Am Meteorol Soc 91(10):1357–1363. doi:10.1175/2010BAMS2877.1

    Article  Google Scholar 

  16. Hazeleger W, Wang X, Severijns C, Stefanescu S, Bintanja R, Sterl A, Wyser K, Semmler T, Yang S, Hurk B, Noije T, Linden E, Wiel K (2012) EC-Earth V2.2: description and validation of a new seamless earth system prediction model. Clim Dyn 39(11):2611–2629. doi:10.1007/s00382-011-1228-5

    Article  Google Scholar 

  17. Huffman GJ, Adler RF, Bolvin DT, Gu G (2009) Improving the global precipitation record: GPCP version 2.1. Geophys Res Lett 36: doi:10.1029/2009GL040000

  18. Kirtman B, Min D, Infanti J, Kinter J III, Paolino D, Zhang Q, van den Dool H, Saha S, Pena Mendez M, Becker E, Peng P, Tripp P, Huang J, DeWitt D, Tippett M, Barnston A, Li S, Rosati A, Schubert S, Rienecker M, Suarez M, Li Z, Marshak J, Lim YK, Tribbia J, Pegion K, Merryfield W, Denis B, Wood E (2013) The North American Multi-Model Ensemble (NMME): Phase-1 seasonal to interannual prediction, Phase-2 toward developing intra-seasonal prediction. Bull Am Meteorol Soc. doi:10.1175/BAMS-D-12-00050.1

  19. Kirtman BP, Min D (2009) Multimodel ensemble ENSO prediction with CCSM and CFS. Mon Weather Rev 137:2908–2930. doi:10.1175/2009MWR2672.1

    Article  Google Scholar 

  20. Lin JL (2007) The double-ITCZ problem in IPCC AR4 coupled GCMs: ocean-atmosphere feedback analysis. J Clim 20(18):4497–4525. doi:10.1175/JCLI4272.1

    Article  Google Scholar 

  21. Madec G (2008) NEMO ocean engine. Note du Pôle de modélisation No 27, Institut Pierre-Simon Laplace (IPSL), France, ISSN No 1288–1619

  22. Murphy AH (1973) A new vector partition of the probability score. J Appl Meteorol 12:595–600

    Article  Google Scholar 

  23. Neelin JD, Battisti DS, Hirst AC, Fei-Fei J, Wakata Y, Yamagata T, Zebiak S (1998) ENSO theory. J Geophys Res 103:14,261–14,290

    Article  Google Scholar 

  24. Palmer TN (2012) Towards the probabilistic earth-system simulator: a vision for the future of climate and weather prediction. Q J R Meteorol Soc 138:841–861. doi:10.1002/qj.1923

    Article  Google Scholar 

  25. Palmer TN, Alessandri A, Andersen U, Cantelaube P, Davey M, Délécluse P, Déqué M, Díez E, Doblas-Reyes FJ, Feddersen H, Graham R, Gualdi S, Guérémy JF, Hagedorn R, Hoshen M, Keenlyside NS, Latif M, Lazar A, Maisonnave E, Marletto V, Morse AP, Orfila B, Rogel P, Terres JM, Thomson MC (2004) Development of a European multimodel ensemble system for seasonal-to-interannual prediction (DEMETER). Bull Am Meteorol Soc 85:853–872

    Article  Google Scholar 

  26. Palmer TN, Buizza R, Hagedorn R, Lawrence A, Leutbecher M, Smith L (2006) Ensemble prediction: a pedagogical perspective. ECMWF Newsletter 106:10–17

    Google Scholar 

  27. Palmer TN, Buizza R, Doblas-Reyes F, Jung F, Leutbecher M, Shutts GJ, Steinheimer M, Weisheimer A (2009) Stochastic parametrization and model uncertainty. Technical Memorandum 598, ECMWF

  28. Rodrigues LRL, Doblas-Reyes F, Coelho CAS (2013) Multimodel calibration and combination of tropical sea surface temperature forecasts. Clim Dyn. doi:10.1007/s00382-013-1179-8

  29. Shutts G (2005) A kinetic energy backscatter algorithm for use in ensemble prediction systems. Q J R Meteorol Soc 131:3079–3102. doi:10.1256/qj.04.106

    Article  Google Scholar 

  30. Shutts GJ, Palmer TN (2007) Convective forcing fluctuations in a cloud-resolving model: relevance to the stochastic parameterization problem. J Clim 20:187–202. doi:10.1175/JCLI3954.1

    Article  Google Scholar 

  31. Shutts GJ, Callado Pallarès A (2014) Assessing parametrization uncertainty associated with horizontal resolution in numerical weather prediction models. Philos Trans R Soc Lond A 372. doi:10.1098/rsta.2013.0284

  32. Stephenson DB, Coelho CAS, Doblas-Reyes FJ, Balmaseda M (2005) Forecast assimilation: a unified framework for the combination of multi-model weather and climate predictions. Tellus 57A(3):253–264

    Article  Google Scholar 

  33. Stockdale TN, Anderson DLT, Balmaseda MA, Doblas-Reyes F, Ferranti L, Mogensen K, Palmer TN, Molteni F, Vitart F (2011) ECMWF seasonal forecast system 3 and its prediction of sea surface temperature. Clim Dyn 37(3–4):455–471

    Article  Google Scholar 

  34. Toth Z, Talagrand O, Candille G, Zhu Y (2003) Probability and ensemble forecasts. In: Joliffe I, Stephenson D (eds) Forecast verification, a practitioner’s guide in atmospheric science. Wiley, pp 137–163

  35. Troccoli A (2010) Review: seasonal climate forecasting. Meteorol Appl 17:251–268. doi:10.1002/met.184

    Google Scholar 

  36. Vitart F, Huddleston MR, Déqué M, Peake D, Palmer TN, Stockdale TN, Davey MK, Ineson S, Weisheimer A (2007) Dynamically-based seasonal forecasts of Atlantic tropical storm activity issued in June by EUROSIP. Geophys Res Lett 34(16): doi:10.1029/2007GL030740

  37. Wang B, Lee JY, Kang IS, Shukla J, Park CK, Kumar A, Schemm J, Cocke S, Kug JS, Luo JJ, Zhou L, Wang B, Fu X, Yun WT, Alves O, Jin EK, Kinter J, Kirtman B, Krishnamurti T, Lau NC et al (2009) Advance and prospectus of seasonal prediction: assessment of the APCC/CliPAS 14-model ensemble retrospective seasonal prediction (1980–2004). Clim Dyn 33:93–117. doi:10.1007/s00382-008-0460-0

    Article  Google Scholar 

  38. Weisheimer A, Palmer TN (2014) On the reliability of seasonal climate forecasts. J R Soc Interface 11: doi:10.1098/rsif.2013.1162

  39. Weisheimer A, Doblas-Reyes FJ, Palmer TN, Alessandri A, Arribas A, Déqué M, Keenlyside N, MacVean M, Navarra A, Rogel P (2009) ENSEMBLES: a new multi-model ensemble for seasonal-to-annual predictions: skill and progress beyond DEMETER in forecasting tropical Pacific SSTs. Geophys Res Lett 36: doi:10.1029/2009GL040896

  40. Weisheimer A, Palmer TN, Doblas-Reyes FJ (2011) Assessment of representations of model uncertainty in monthly and seasonal forecast ensembles. Geophys Res Lett 38(L16):703. doi:10.1029/2011GL048123

    Google Scholar 

  41. Weisheimer A, Corti S, Palmer TN, Vitart F (2014) Addressing model error through atmospheric stochastic physical parametrisations: Impact on the coupled ECMWF seasonal forecasting system. Philos Trans R Soc Lond A 372: doi:10.1098/rsta.2013.0290

Download references

Acknowledgments

The constructive comments of two anonymous reviewers were gratefully received, and helped improve this manuscript. The authors would like to thank Alfons Callado-Pallarès for his help and insightful comments, as well as Stefan Siegert for useful discussions on forecast quality evaluation. They are indebted to Muhammed Asif, Domingo Manubens Gil and Oriol Mula Valls for technical support in running the experiments. Experiments were run on the Marenostrum 3 HPC in Barcelona with resources provided by the RES (Red Española de Supercomputación). Most figures were computed using the R language and s2dverification package (http://cran.r-project.org/web/packages/s2dverification/index.html). The analysis of the experiments was achieved in the framework of the EU project SPECS funded by the European Commissions Seventh Framework Research Programme, under the grant agreement 308378.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Lauriane Batté.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 27636 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Batté, L., Doblas-Reyes, F.J. Stochastic atmospheric perturbations in the EC-Earth3 global coupled model: impact of SPPT on seasonal forecast quality. Clim Dyn 45, 3419–3439 (2015). https://doi.org/10.1007/s00382-015-2548-7

Download citation

Keywords

  • Seasonal climate forecasting
  • Stochastic physics
  • Ensemble forecasting