Climate Dynamics

, Volume 45, Issue 11–12, pp 3077–3090 | Cite as

A Tripole Index for the Interdecadal Pacific Oscillation

  • Benjamin J. Henley
  • Joelle Gergis
  • David J. Karoly
  • Scott Power
  • John Kennedy
  • Chris K. Folland


A new index is developed for the Interdecadal Pacific Oscillation, termed the IPO Tripole Index (TPI). The IPO is associated with a distinct ‘tripole’ pattern of sea surface temperature anomalies (SSTA), with three large centres of action and variations on decadal timescales, evident in the second principal component (PC) of low-pass filtered global SST. The new index is based on the difference between the SSTA averaged over the central equatorial Pacific and the average of the SSTA in the Northwest and Southwest Pacific. The TPI is an easily calculated, non-PC-based index for tracking decadal SST variability associated with the IPO. The TPI time series bears a close resemblance to previously published PC-based indices and has the advantages of being simpler to compute and more consistent with indices used to track the El Niño–Southern Oscillation (ENSO), such as Niño 3.4. The TPI also provides a simple metric in physical units of °C for evaluating decadal and interdecadal variability of SST fields in a straightforward manner, and can be used to evaluate the skill of dynamical decadal prediction systems. Composites of SST and mean sea level pressure anomalies reveal that the IPO has maintained a broadly stable structure across the seven most recent positive and negative epochs that occurred during 1870–2013. The TPI is shown to be a robust and stable representation of the IPO phenomenon in instrumental records, with relatively more variance in decadal than shorter timescales compared to Niño 3.4, due to the explicit inclusion of off-equatorial SST variability associated with the IPO.


Interdecadal Pacific Oscillation Pacific Decadal Oscillation Pacific Decadal Variability IPO PDO PDV TPI 



BH is supported by the Australian Research Council under a Cooperative Research Network (CRN) fellowship. JG is supported by an Australian Research Council DECRA fellowship DE130100668, and DK is supported by the Australian Research Council Centre of Excellence for Climate System Science. SBP is supported by the Australian Department of the Environment through the Australian Climate Change Science Program. JK and CKF are supported by the Joint UK DECC/Defra Met Office Hadley Centre Climate Programme (GA01101). The TPI is available at:

Supplementary material

382_2015_2525_MOESM1_ESM.xlsx (698 kb)
Supplementary material 1 (XLSX 698 kb)


  1. Andreoli RV, Kayano MT (2005) ENSO-related rainfall anomalies in South America and associated circulation features during warm and cold Pacific decadal oscillation regimes. Int J Climatol 25(15):2017–2030CrossRefGoogle Scholar
  2. Arblaster JM, Meehl GA, Moore AM (2002) Interdecadal modulation of Australian rainfall. Clim Dyn 18(6):519–531CrossRefGoogle Scholar
  3. Biondi F, Gershunov A, Cayan DR (2001) North Pacific decadal climate variability since 1661. J Clim 14:5–10CrossRefGoogle Scholar
  4. Cai W, van Rensch P (2012) The 2011 southeast Queensland extreme summer rainfall: a confirmation of a negative Pacific Decadal Oscillation phase? Geophys Res Lett 39(8):L08702Google Scholar
  5. Cai W, Whetton P (2001) Modes of SST variability and the fluctuation of global mean temperature. Clim Dyn 17(11):889–901CrossRefGoogle Scholar
  6. Christensen JH et al (2013) Climate phenomena and their relevance for future regional climate change. In: Stocker TF et al (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 1217–1308Google Scholar
  7. Compo GP et al (2011) The twentieth century reanalysis project. Q J R Meteorol Soc 137(654):1–28CrossRefGoogle Scholar
  8. D’Arrigo R, Wilson R (2006) On the Asian expression of the PDO. Int J Climatol 26(12):1607–1617CrossRefGoogle Scholar
  9. Deser C, Phillips AS, Hurrell JW (2004) Pacific interdecadal climate variability: linkages between the tropics and the North Pacific during boreal winter since 1900. J Clim 1900:3109–3124CrossRefGoogle Scholar
  10. Deser C et al (2010) Sea surface temperature variability: patterns and mechanisms. Ann Rev Mar Sci 2:115–143CrossRefGoogle Scholar
  11. England MH et al (2014) Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nat Clim Change 4(3):222–227CrossRefGoogle Scholar
  12. Folland CK et al (2002) Relative influences of the Interdecadal Pacific Oscillation and ENSO on the South Pacific Convergence Zone. Geophys Res Lett 29(13)Google Scholar
  13. Folland CK, Salinger MJ (1995) Surface temperature trends and variations in New Zealand and the surrounding ocean, 1871–1993. Int J Climatol 15:1195–1218CrossRefGoogle Scholar
  14. Folland CK et al (1999) Large scale modes of ocean surface temperature since the late nineteenth century. In: Navarra A (ed) Beyond El Nino: decadal and interdecadal climate variability. Springer, New York, pp 73–102CrossRefGoogle Scholar
  15. Folland CK et al (2003) Trends and variations in South Pacific island and ocean surface temperatures. J Clim 16(1995):2859–2874CrossRefGoogle Scholar
  16. Folland CK et al (2013) High predictive skill of global surface temperature a year ahead. Geophys Res Lett 40(4):761–767CrossRefGoogle Scholar
  17. Gallant AJE et al (2013) Nonstationary Australasian teleconnections and implications for paleoclimate reconstructions. J Clim 26(22):8827–8849CrossRefGoogle Scholar
  18. Gergis J et al (2012) On the long-term context of the 1997–2009 “Big Dry” in South-Eastern Australia: insights from a 206-year multi-proxy rainfall reconstruction. Clim Change 111:923–944CrossRefGoogle Scholar
  19. Gershunov A, Barnett TP (1998) Interdecadal modulation of ENSO teleconnections. Bull Am Meteorol Soc 79(12):2715–2725CrossRefGoogle Scholar
  20. Gershunov A, Cayan D (2003) Heavy daily precipitation frequency over the contiguous United States: sources of climatic variability and seasonal predictability. J Clim 16:2752–2765CrossRefGoogle Scholar
  21. Hamlet AF, Lettenmaier DP (2007) Effects of 20th century warming and climate variability on flood risk in the western U.S. Water Resour Res 43(6):W06427Google Scholar
  22. Hartmann DL et al (2013) Observations: atmosphere and surface. In: Stocker TF et al (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 159–254Google Scholar
  23. Henley BJ et al (2011) Climate-informed stochastic hydrological modeling: incorporating decadal-scale variability using paleo data. Water Resour Res 47(11):W11509Google Scholar
  24. Henley BJ, Thyer MA, Kuczera G (2013) Climate driver informed short-term drought risk evaluation. Water Resour Res 49(5):2317–2326Google Scholar
  25. Ilin A, Kaplan A (2009) Bayesian PCA for reconstruction of historical sea surface temperatures. In: Proceedings of the international joint conference on neural networks (IJCNN 2009). Atlanta, USA, pp 1322–1327Google Scholar
  26. Jolliffe IT (2002) Principal component analysis, 2nd edn. Springer, New YorkGoogle Scholar
  27. Karspeck AR, Kaplan A, Sain SR (2011) Bayesian modelling and ensemble reconstruction of mid-scale spatial variability in North Atlantic sea-surface temperatures for 1850–2008. Q J R Meteorol Soc 138:234–248CrossRefGoogle Scholar
  28. Kennedy JJ et al (2011a) Reassessing biases and other uncertainties in sea surface temperature observations measured in situ since 1850: 1. Measurement and sampling uncertainties. J Geophys Res 116(D14):D14103CrossRefGoogle Scholar
  29. Kennedy JJ et al (2011b) Reassessing biases and other uncertainties in sea surface temperature observations measured in situ since 1850: 2. Biases and homogenization. J Geophys Res 116(D14):D14104CrossRefGoogle Scholar
  30. Kennedy JJ et al (2015) The Met Office Hadley Centre sea ice and sea-surface temperature data set, version 2: 2. Sea-surface temperature analysis (in preparation)Google Scholar
  31. Kiem AS, Franks SW, Kuczera G (2003) Multi-decadal variability of flood risk. Geophys Res Lett 30(2):1035CrossRefGoogle Scholar
  32. King AD, Alexander LV, Donat MG (2013) Asymmetry in the response of eastern Australia extreme rainfall to low-frequency Pacific variability. Geophys Res Lett 40(10):2271–2277CrossRefGoogle Scholar
  33. Kirtman B et al (2013) Near-term climate change: projections and predictability. In: Stocker TF et al (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 953–1028Google Scholar
  34. Linsley BK et al (2008) Interdecadal-decadal climate variability from multicoral oxygen isotope records in the South Pacific Convergence Zone region since 1650 AD. Paleoceanography 23(2):PA2219CrossRefGoogle Scholar
  35. Luo J-J, Sasaki W, Masumoto Y (2012) Indian Ocean warming modulates Pacific climate change. Proc Natl Acad Sci USA 109(46):18701–18706CrossRefGoogle Scholar
  36. Mantua NJ, Hare SR (2002) The pacific decadal oscillation. J Oceanogr 58(1):35–44CrossRefGoogle Scholar
  37. Mantua NJ et al (1997) A Pacific interdecadal climate oscillation with impacts on salmon production. Bull Am Meteorol Soc 78(January):1069–1079CrossRefGoogle Scholar
  38. McCabe GJ, Dettinger MD (1999) Decadal variations in the strength of ENSO teleconnections with precipitation in the western United States. Int J Climatol 19(13):1399–1410CrossRefGoogle Scholar
  39. McGregor S et al (2014) Recent Walker circulation strengthening and Pacific cooling amplified by Atlantic warming. Nat Clim Change 4(10):888–892CrossRefGoogle Scholar
  40. McPhaden MJ, Zhang D (2004) Pacific Ocean circulation rebounds. Geophys Res Lett 31(18):L18301CrossRefGoogle Scholar
  41. Meehl G, Hu A (2006) Megadroughts in the Indian monsoon region and southwest North America and a mechanism for associated multidecadal Pacific sea surface temperature anomalies. J Clim 19(9):1605–1623CrossRefGoogle Scholar
  42. Meehl GA, Hu A, Tebaldi C (2010) Decadal prediction in the Pacific region. J Clim 23(11):2959–2973CrossRefGoogle Scholar
  43. Meehl G et al (2013) Externally forced and internally generated decadal climate variability associated with the Interdecadal Pacific Oscillation. J Clim 26(18):7298–7310  CrossRefGoogle Scholar
  44. Micevski T, Franks SW, Kuczera G (2006) Multidecadal variability in coastal eastern Australian flood data. J Hydrol 327(1–2):219–225Google Scholar
  45. Morice CP et al (2012) Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: the HadCRUT4 data set. J Geophys Res 117(D8):D08101Google Scholar
  46. Newman M, Compo GP, Alexander MA (2003) ENSO-forced variability of the Pacific decadal oscillation. J Clim 16(23):3853–3857  CrossRefGoogle Scholar
  47. Parker DE, Folland CK, Jackson M (1995) Marine surface temperature: observed variations and data requirements. Clim Change 31(2–4):559–600CrossRefGoogle Scholar
  48. Parker D et al (2007) Decadal to multidecadal variability and the climate change background. J Geophys Res 112(D18):D18115Google Scholar
  49. Power S, Colman R (2006) Multi-year predictability in a coupled general circulation model. Clim Dyn 26(2–3):247–272CrossRefGoogle Scholar
  50. Power S et al (1998) Australian temperature, Australian rainfall and the Southern Oscillation, 1910–1992: coherent variability and recent changes. Aust Meteorol Mag 47(2):85–101Google Scholar
  51. Power S et al (1999) Inter-decadal modulation of the impact of ENSO on Australia. Clim Dyn 15(5):319–324CrossRefGoogle Scholar
  52. Pui A, Lal A, Sharma A (2011) How does the Interdecadal Pacific Oscillation affect design floods in Australia? Water Resour Res 47:W05554CrossRefGoogle Scholar
  53. Qian C, Zhou T (2014) Multidecadal variability of North China aridity and its relationship to PDO during 1900–2010. J Clim 27(3):1210–1222CrossRefGoogle Scholar
  54. Rayner NA et al (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res Atmos 108(D14):4407CrossRefGoogle Scholar
  55. Rayner NA et al (2006) Improved analyses of changes and uncertainties in sea surface temperature measured in situ sice the mid-nineteenth century: the HadSST2 dataset. J Clim 19(3):446–469CrossRefGoogle Scholar
  56. Rayner NA et al (2015) The Met Office Hadley Centre sea ice and sea-surface temperature data set, version 2: 3. The combined analysis (in preparation)Google Scholar
  57. Salinger MJ, Renwick JA, Mullan AB (2001) Interdecadal Pacific Oscillation and South Pacific climate. Int J Climatol 21:1705–1721CrossRefGoogle Scholar
  58. Salinger MJ et al (2014) A new index for variations in the position of the South Pacific convergence zone 1910/11–2011/2012. Clim Dyn 43(3–4):881–892Google Scholar
  59. Schneider N, Cornuelle B (2005) The forcing of the Pacific decadal oscillation. J Clim 18:4355–4373CrossRefGoogle Scholar
  60. Smith TM et al (2008) Improvements to NOAA’s historical merged land-ocean surface temperature analysis (1880–2006). J Clim 21(10):2283–2296CrossRefGoogle Scholar
  61. Stewart I, Cayan D, Dettinger M (2005) Changes toward earlier streamflow timing across western North America. J Clim 18:1136–1155CrossRefGoogle Scholar
  62. Verdon DC et al (2004) Multidecadal variability of rainfall and streamflow: eastern Australia. Water Resour Res 40(10):W10201CrossRefGoogle Scholar
  63. Wang L, Chen W, Huang R (2008) Interdecadal modulation of PDO on the impact of ENSO on the east Asian winter monsoon. Geophys Res Lett 35(20):L20702CrossRefGoogle Scholar
  64. Wang S et al (2014) Combined effects of the Pacific decadal oscillation and El Niño–Southern oscillation on global land dry-wet changes. Sci Rep 4:6651CrossRefGoogle Scholar
  65. Zhang Y, Wallace JM, Battisti DS (1997) ENSO-like interdecadal variability: 1900-93. J Clim 10(5):1004–1020Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Benjamin J. Henley
    • 1
  • Joelle Gergis
    • 1
  • David J. Karoly
    • 1
  • Scott Power
    • 2
  • John Kennedy
    • 3
  • Chris K. Folland
    • 3
    • 4
  1. 1.School of Earth SciencesUniversity of MelbourneParkvilleAustralia
  2. 2.Centre for Australian Weather and Climate ResearchBureau of MeteorologyMelbourneAustralia
  3. 3.Met Office Hadley CentreExeterUK
  4. 4.Department of Earth SciencesUniversity of GothenburgGothenburgSweden

Personalised recommendations