Skip to main content

Advertisement

Log in

Recent surface mass balance from Syowa Station to Dome F, East Antarctica: comparison of field observations, atmospheric reanalyses, and a regional atmospheric climate model

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Stake measurements at 2 km intervals are used to determine the spatial and temporal surface mass balance (SMB) in recent decades along the Japanese Antarctic Research Expedition traverse route from Syowa Station to Dome F. To determine SMB variability at regional scales, this traverse route is divided into four regions, i.e., coastal, lower katabatic, upper katabatic and inland plateau. We also perform a regional evaluation of large scale SMB simulated by the regional atmospheric climate model versions 2.1 and 2.3 (RACMO2.1 and RACMO2.3), and the four more recent global reanalyses. Large-scale spatial variability in the multi-year averaged SMB reveals robust relationships with continentality and surface elevation. In the katabatic regions, SMB variability is also highly associated with surface slope, which in turn is affected by bedrock topography. Stake observation records show large inter-annual variability in SMB, but did not indicate any significant trends over both the last 40 years for the coastal and lower katabatic regions, and the last 20 years record for the upper katabatic and inland plateau regions. The four reanalyses and the regional climate model reproduce the macro-scale spatial pattern well for the multi-year averaged SMB, but fail to capture the mesoscale SMB increase at the distance interval ~300 to ~400 km from Syowa station. Thanks to the updated scheme in the cloud microphysics, RACMO2.3 shows the best spatial agreement with stake measurements over the inland plateau region. ERA-interim, JRA-55 and MERRA exhibit high agreement with the inter-annual variability of observed SMB in the coastal, upper katabatic and inland plateau regions, and moderate agreement in the lower katabatic region, while NCEP2 and RACMO2.1 inter-annual variability shows no significant correlation with the observations for the inland plateau region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Agosta C, Favier V, Genthon C, Gallée H, Krinner G, Lenaerts JTM, van den Broeke MR (2012) A 40-year accumulation dataset for Adelie Land, Antarctica and its application for model validation. Clim Dyn 38:75–86. doi:10.1007/s00382-011-1103-4

    Article  Google Scholar 

  • Agosta C, Favier V, Krinner G, Gallée H, Fettweis X, Genthon C (2013) High-resolution modelling of the Antarctic surface mass balance, application for the twentieth, twenty first and twenty second centuries. Clim Dyn 41:3247–3260. doi:10.1007/s00382-013-1903-9

    Article  Google Scholar 

  • Anschütz H, Müller K, Isaksson E, McConnell JR, Fischer H, Miller H, Albert M, Winther J-G (2009) Revisiting sites of the South Pole Queen Maud Land Traverses in East Antarctica: accumulation data from shallow firn cores. J Geophys Res. doi:10.1029/2009JD012204

    Google Scholar 

  • Anschütz H, Sinisalo A, Isaksson E, McConnell JR, Hamran S-E, Bisiaux MM, Pasteris D, Neumann TA, Winther J-G (2011) Variation of accumulation rates over the last eight centuries on the East Antarctic Plateau derived from volcanic signals in ice cores. J Geophys Res. doi:10.1029/2011JD015753

    Google Scholar 

  • Arthern R, Winebrenner D, Vaughan D (2006) Antarctic snow accumulation mapped using polarization of 4.3-cm wavelength emission. J Geophys Res. doi:10.1029/2004JD005667

    Google Scholar 

  • Azuma N, Kameda T, Nakayama Y, Tanaka Y, Yoshimi H, Furukawa T, Ageta Y (1997) Glaciological data collected by the 36th Japanese Antarctic Research Expedition during 1995–1996. JARE Data Rep 223((Glaciology 26)):83

    Google Scholar 

  • Bamber JL, Gomez-Dans JL, Griggs JA (2009) Antarctic 1 km digital elevation model (DEM) from combined ERS-1 radar and ICESat laser satellite altimetry. In: National snow and ice data center. Digital media, Boulder, Colorado USA

  • Barletta VR, Sørensen LSS, Forsberg R (2013) Scatter of mass changes estimates at basin scale for Greenland and Antarctica. The Cryosphere 7:1411–1432

    Article  Google Scholar 

  • Bosilovich MG, Chen J, Robertson FR, Adler RF (2008) Evaluation of precipitation in reanalyses. J Appl Meteorol Climatol 47:2279–2299

    Article  Google Scholar 

  • Bromwich DH, Wang S-H (2008) A review of the temporal and spatial variability of Arctic and Antarctic atmospheric circulations based upon ERA-40. Dyn Atmos Oceans 44:213–243

    Article  Google Scholar 

  • Bromwich DH, Nicolas JP, Monaghan AJ (2011) An assessment of precipitation changes over Antarctica and the Southern Ocean since 1989 in contemporary global reanalyses. J Clim 24:4189–4209. doi:10.1175/2011JCLI4074.1

    Article  Google Scholar 

  • Burgess EW, Forster RR, Box JE, Mosley-Thompson E, Bromwich DH, Bales RC, Smith LC (2010) A spatially calibrated model of annual accumulation rate on the Greenland Ice Sheet. J Geophys Res. doi:10.1029/2009JF001293

    Google Scholar 

  • Conger SM, McClung DM (2009) Comparison of density cutters for snow profile observations. J Glaciol 55:163–169. doi:10.3189/002214309788609038

    Article  Google Scholar 

  • Das I, Bell RE, Scambos TA, Wolovick M, Creyts TT, Studinger M, Frearson N, Nicolas JP, Lenaerts JTM, van den Broeke MR (2013) Influence of persistent wind scour on the surface mass balance of Antarctica. Nat Geosci 6:367–371. doi:10.1038/ngeo1766

    Article  Google Scholar 

  • Davis CH, Li Y, McConnell JR, Frey MM, Hanna E (2005) Snowfall driven growth in East Antarctic ice sheet mitigates recent sea level rise. Science 308:1898–1901. doi:10.1126/science.1110662

    Article  Google Scholar 

  • Decker M, Brunke MA, Wang Z, Sakaguchi K, Zeng XB, Bosilovich MG (2012) Evaluation of the reanalysis products from GSFC, NCEP, and ECMWF using flux tower observations. J Clim 25:1916–1944. doi:10.1175/JCLI-D-11-00004.1

    Article  Google Scholar 

  • Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Hólm EV, Isaksen L, Kållberg P, Köhler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette J-J, Park B-K, Peubey C, de Rosnay P, Tavolato C, Thépaut J-N, Vitart F (2011) The ERA-interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597. doi:10.1002/qj.828

    Article  Google Scholar 

  • Ding M, Xiao C, Li Y, Ren J, Hou S, Jin B, Sun B (2011) Spatial variability of surface mass balance along a traverse route. J Glaciol 57:658–666

    Article  Google Scholar 

  • Ebita A, Kobayashi S, Ota Y, Moriya M, Kumabe R, Onogi K, Harada Y, Yasui S, Miyaoka K, Takahashi K, Kamahori H, Kobayashi C, Endo H, Soma M, Oikawa Y, Ishimizu T (2011) The Japanese 55-year Reanalysis “JRA-55”: an interim report. SOLA 7:149–152

    Article  Google Scholar 

  • Endo Y, Fujiwara K (1973) Characteristics of the snow cover in East Antarctica along the route of the JARE South Pole traverse and factors controlling such characteristics. JARE Sci Rep 7:1–27

    Google Scholar 

  • Ettema J, van den Broeke MR, van Meijgaard E, van de Berg WJ, Bamber JL, Box JE, Bales RC (2009) Higher surface mass balance of the Greenland ice sheet revealed by high-resolution climate modeling. Geophys Res Lett. doi:10.1029/2009GL038110

    Google Scholar 

  • Favier V, Agosta C, Parouty S, Durand G, Delaygue G, Gallée H, Drouet A-S, Trouvilliez A, Krinner G (2013) An updated and quality controlled surface mass balance dataset for Antarctica. The Cryosphere 7:583–597. doi:10.5194/tc-7-583-2013

    Article  Google Scholar 

  • Fernandoy F, Meyer H, Oerter H, Wilhelms F, Graf W, Schwander J (2010) Temporal and spatial variation of stable isotope ratios and accumulation rates in the hinterland of Neumayer station, East Antarctica. J Glaciol 56:673–687

    Article  Google Scholar 

  • Frezzotti M, Pourchet M, Flora O, Gandolfi S, Gay M, Urbini S, Vincent C, Becagli S, Gragnani R, Proposito M, Severi M, Traversi R, Udisti R, Fily M (2004) New estimations of precipitation and surface sublimation in East Antarctica from snow accumulation measurements. Clim Dyn 23:7–8. doi:10.1007/s00382-004-0462-5

    Article  Google Scholar 

  • Frezzotti M, Pourchet M, Flora O, Gandolfi S, Gay M, Urbini S, Vincent C, Becagli S, Gragnani R, Proposito M, Severi M, Traversi R, Udisti R, Fily M (2005) Spatial and temporal variability of snow accumulation in East Antarctica from traverse data. J Glaciol 51:113–124

    Article  Google Scholar 

  • Frezzotti M, Urbini S, Proposito M, Scarchilli C, Gandolfi S (2007) Spatial and temporal variability of surface mass balance near Talos Dome, East Antarctica. J Geophys Res 112(F02032):1–15. doi:10.1029/2006JF000638

    Google Scholar 

  • Fujita S, Holmlund P, Andersson I, Brown I, Enomoto H, Fujii Y, Fujita K, Fukui K, Furukawa T, Hansson M, Hara K, Hoshina Y, Igarashi M, Iizuka Y, Imura S, Ingvander S, Karlin T, Motoyama H, Nakazawa F, Oerter H, Sjöberg LE, Sugiyama S, Surdyk S, Ström J, Uemura R, Wilhelms F (2011) Spatial and temporal variability of snow accumulation rate on the East Antarctic ice divide between Dome Fuji and EPICA DML. The Cryosphere 5:1057–1081

    Article  Google Scholar 

  • Fujiwara K, Endo Y (1971) Preliminary report of glaciological studies. JARE Sci Rep Spec Issue 2:68–109

    Google Scholar 

  • Furukawa T, Kamiyama K, Maeno H (1996) Snow surface features along the traverse route from the coast to Dome Fuji Station, Queen Maud Land, Antarctica. Proc NIPR Symp Polar Meteorol Glaciol 10:13–24

    Google Scholar 

  • Gallée H, Trouvilliez A, Agosta C, Genthon C, Favier V, Naaim-Bouvet F (2013) Transport of snow by the wind: a comparison between observations in Adélie Land, Antarctica, and simulations made with the regional climate model MAR, Bound.-Lay. Meteorology 146:133–147

    Google Scholar 

  • Genthon C, Lardeux P, Krinner G (2007) The surface accumulation and ablation of a coastal blue-ice area near Cap Prudhomme, Adélie Land, Antarctica. J Glaciol 53:635–645. doi:10.3189/002214307784409333

    Article  Google Scholar 

  • Giovinetto M, Zwally H (2000) Spatial distribution of net surface mass accumulation on the Antarctic ice sheet. Ann Glaciol 31:171–178

    Article  Google Scholar 

  • GSI (2007) 50 Years of Antarctic Research Expeditions by the Geographical Survey Institute Planning Department, Geodetic Department, and Topographic Department. Bull GSI 54

  • Hanna E, Huybrechts P, Cappelen J, Steffen K, Bales RC, Burgess E, McConnell JR, Steffensen JP, Van den Broeke M, Wake L, Bigg G, Griffiths M, Savas D (2011) Greenland Ice Sheet surface mass balance 1870 to 2010 based on twentieth century reanalysis, and links with global climate forcing. J Geophys Res. doi:10.1029/2011JD016387

    Google Scholar 

  • Helsen MM, van den Broeke MR, van de Wal RSW, van de Berg WJ, van Meijgaard E, Davis CH, Li YH, Goodwin I (2008) Elevation changes in Antarctica mainly determined by accumulation variability. Science 320:1626–1629. doi:10.1126/science.1153894

    Article  Google Scholar 

  • Kaczmarska M, Isaksson E, Karlöf L, Winther J-G, Konhler J, Godtliebsen F, Olsen LR, Hofstede CM, van den Broeke MR, van de Wal RSW, Gundestrup N (2004) Accumulation variability derived from an ice core from coastal Dronning Maud Land, Antarctica. Ann Glaciol 39:339–345

    Article  Google Scholar 

  • Kameda T, Motoyama H, Fujita S, Takahashi S (2008) Temporal and spatial variability of surface mass balance at Dome Fuji, East Antarctica, by the stake method from 1995 to 2006. J Glaciol 54:107–116

    Article  Google Scholar 

  • King JC, Anderson PS, Vaughan DG, Mann GW, Mobbs SD, Vosper SB (2004) Wind-borne redistribution of snow across an Antarctic ice rise. J Geophys Res. doi:10.1029/2003JD004361

    Google Scholar 

  • Lenaerts JTM, Van den Broeke MR (2012) Modeling drift snow in Antarctica with a regional climate model. 2. Results. J Geophys Res. doi:10.1029/2010JD015419

    Google Scholar 

  • Lenaerts JTM, van den Broeke MR, Déry SJ, König-Langlo G, Ettema J, Munneke PK (2010) Modelling snowdrift sublimation on an Antarctic ice shelf. The Cryosphere 4:179–190. doi:10.5194/tc-4-179-2010

    Article  Google Scholar 

  • Lenaerts JTM, Van den Broeke MR, Van de Berg WJ, Meijgaard EV, Munneke PK (2012a) A new, high-resolution surface mass balance map of Antarctica (1979–2010) based on regional atmospheric climate modeling. Geophys Res Lett. doi:10.1029/2011GL050713

    Google Scholar 

  • Lenaerts JTM, Van den Broeke MR, Dery SJ, van Meijgaard E, van de Berg WJ, Palm SP, Sanz Rodrigo J (2012b) Modeling drifting snow in Antarctica with a regional climate model: 1. Methods and model evaluation. J Geophys Res. doi:10.1029/2011JD016145

    Google Scholar 

  • Ligtenberg SRM, Kuipers Munneke P, van den Broeke MR (2014) Present and future variations in Antarctic firn air content. The Cryosphere 8:1711–1723. doi:10.5194/tc-8-1711-2014

    Article  Google Scholar 

  • Liston GE, Winther J-G (2005) Antarctic surface and subsurface snow and ice melt fluxes. J Clim 18:1469–1481

    Article  Google Scholar 

  • Medley B, Joughin I, Das SB, Steig EJ, Conway H, Gogineni S, Criscitiello AS, McConnell JR, Smith BE, van den Broeke MR, Lenaerts JTM, Bromwich DH, Nicolas JP (2013) Airborne-radar and ice-core observations of annual snow accumulation over Thwaites Glacier, West Antarctica confirm the spatiotemporal variability of global and regional atmospheric models. Geophys Res Lett 40:3649–3654. doi:10.1002/grl.50706

    Article  Google Scholar 

  • Monaghan AJ, Bromwich DH, Fogt RL, Wang S, Mayewski PA, Dixon DA, Ekaykin A, Frezzotti M, Goodwin I, Isaksson E, Kaspari SD, Morgan VI, Oerter H, Van Ommen TD, Van der Veen CJ, Wen J (2006a) Insignificant change in Antarctic snowfall since the international geophysical year. Science 313:827–831. doi:10.1126/science.1128243

    Article  Google Scholar 

  • Monaghan AJ, Bromwich DH, Wang S-H (2006b) Recent trends in Antarctic snow accumulation from Polar MM5 simulations. Philos Trans R Soc A364:1683–1708

    Article  Google Scholar 

  • Moore P, King MA (2005) Antarctic ice mass balance estimates from GRACE: tidal aliasing effects. J Geophys Res. doi:10.1029/2007JF000871

    Google Scholar 

  • Motoyama H, Fujii Y (1999) Glaciological data collected by the 38th Japanese Antarctic Research Expedition during 1997–1998. JARE Data Rep 28:1–74

    Google Scholar 

  • Motoyama H, Furukawa T, Nishio F (2008) Study of ice flow observations in Shirase drainage basin and around Dome Fuji area, East Antarctica, by differential GPS method. Antarct Rec 52:216–231 (in Japanese with English summary)

    Google Scholar 

  • Naruse R (1975) Density and hardness of snow in Mizuho Plateau in 1969–1970. JARE Data Rep 27((Glaciology 2)):180–186

    Google Scholar 

  • Oerter H, Wilhelms F, Jung-Rothenhäusler F, Göktas F, Miller H, Graf W, Sommer S (2000) Accumulation rates in Dronning Maud Land, Antarctica, as revealed by dielectric-profiling measurements of shallow firn cores. Ann Glaciol 30:27–34

    Article  Google Scholar 

  • Ohmae H (1984) Density of surface snow cover along routes S, H and Z. JARE Data Rep 94:62–63

    Google Scholar 

  • Onogi K, Tsutsui J, Koide H, Sakamoto M, Kobayashi S, Hatsushika H, Matsumoto T, Yamazaki N, Kamahori H, Takahashi K, Kadokura S, Wada K, Kato K, Oyama R, Ose T, Manoji N, Taira R (2007) The JRA-25 reanalysis. J Meteorol Soc Jpn 85:369–432

    Article  Google Scholar 

  • Richardson C, Holmlund P (1999) Spatial variability at shallow snow-layer depths in central Dronning Maud Land, East Antarctica. Ann Glaciol 29:10–16

    Article  Google Scholar 

  • Rienecker MM, Suarez MJ, Gelaro R, Todling R, Bacmeister J, Liu E, Bosilovich MG, Schubert SD, Takacs L, Kim G-K, Bloom S, Chen J, Collins D, Conaty A, da Silva A, Gu W, Joiner J, Koster RD, Lucchesi R, Molod A, Owens T, Pawson S, Pegion P, Redder CR, Reichle R, Robertson FR, Ruddick AG, Sienkiewicz M, Woollen J (2011) MERRA: NASA’s modern-era retrospective analysis for research and applications. J Clim 24:3624–3648. doi:10.1175/JCLI-D-11-00015.1

    Article  Google Scholar 

  • Rignot E, Velicogna I, van den Broeke MR, Monaghan A, Lenaerts JTM (2011) Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise. Geophys Res Lett. doi:10.1029/2011GL046583

    Google Scholar 

  • Rotschky G, Holmlund P, Isaksson E, Mulvaney R, Oerter H, Van den Broeke MR, Winther JG (2007) A new surface accumulation map for western Dronning Maud Land, Antarctica, from interpolation of point measurements. J Glaciol 53:385–398

    Article  Google Scholar 

  • Sasgen I, Konrad H, Ivins ER, Van den Broeke MR, Bamber JL, Martinec Z, Klemann V (2013) Antarctic ice-mass balance 2003 to 2012: regional reanalysis of GRACE satellite gravimetry measurements with improved estimate of glacial-isostatic adjustment based on GPS uplift rates. The Cryosphere 7:1499–1512. doi:10.5194/tc-7-1499-2013

    Article  Google Scholar 

  • Satow K, Watanabe O, Shoji H, Motoyama H (1999) The relationship among accumulation rate, stable isotope ratio and surface temperature on the plateau of east Dronning Maud Land, Antarctica. Polar Meteorol Glaciol 13:43–52

    Google Scholar 

  • Scambos TA, Frezzotti M, Haran T, Lenaerts JTM, Bohlander J, Van Den Broeke MR, Jezek K, Long D, Urbini S, Farness K, Neumann T, Albert M, Winther J-G (2012) Extent of low-accumulation ‘wind glaze’ areas on the East Antarctic plateau: implications for continental ice mass balance. J Glaciol 58:633–647. doi:10.3189/2012JoG11J232

    Article  Google Scholar 

  • Scarchilli C, Frezzotti M, Grigioni P, Silvestri LD, Agnoletto L, Dolci S (2010) Extraordinary blowing snow transport events in East Antarctica. Clim Dyn 34:1195–1206

    Article  Google Scholar 

  • Schlosser E, Duda MG, Powers JG, Manning KW (2008) Precipitation regime of Dronning Maud Land, Antarctica, derived from Antarctic Mesoscale Prediction System (AMPS) archive data. J Geophys Res. doi:10.1029/2008JD009968

    Google Scholar 

  • Shepherd A, Ivins ER, Geruo A, Barletta VR, Bentley MJ, Bettadpur S, Briggs KH, Bromwich DH, Forsberg R, M Horwath, Galin N, Jacobs S, Joughin I, King MA, Lenaerts JT, Li J, Ligtenberg SR, Luckman A, Luthcke SB, McMillan M, Meister R, Milne G, Mouginot J, Muir A, Nicolas JP, Paden J, Payne AJ, Pritchard H, Rignot E, Rott H, Sørensen LS, Scambos TA, Scheuchl B, Schrama EJ, Smith B, Sundal AV, van Angelen JH, van de Berg WJ, van den Broeke MR, Vaughan DG, Velicogna I, Wahr J, Whitehouse PL, Wingham DJ, Yi D, Young D, Zwally H (2012) A reconciled estimate of ice-sheet mass balance. Science 338:1183–1189. doi:10.1126/science.1228102

    Article  Google Scholar 

  • Simmons A, Uppala S, Dee D, Kobayashi S (2009) ERA-interim: new ECMWF reanalysis products from 1989 onwards. ECMWF Newsletter, No. 110, ECMWF, Reading, United Kingdom, 25–35. http://www.ecmwf.int/publications/newsletters/pdf/110_rev.pdf

  • Sinisalo A, Anschütz H, Aasen AT, Langley K, von Deschwanden A, Kohler J, Matsuoka K, Hamran S-E, Øyan M-J, Schlosser E, Hagen JO, Nøst OA, Isaksson E (2013) Surface mass balance on Fimbul ice shelf, East Antarctica: comparison of field measurements and large-scale studies. J Geophys Res (Atmos) 118:11625–11635. doi:10.1002/jgrd.50875

    Article  Google Scholar 

  • Sugiyama S, Enomoto H, Fujita S, Fukui K, Nakazawa F, Holmlund P, Surdyk S (2012) Snow density along the route traversed by the Japanese–Swedish Antarctic Expedition 2007/08. J Glaciol 58:529–539

    Article  Google Scholar 

  • Takahashi S, Ageta Y, Fujii Y, Watanabe O (1994) Surface mass balance in east Dronning Maud Land, Antarctica, observed by Japanese Antarctic Research Expeditions. J Glaciol 20:242–248

    Article  Google Scholar 

  • Urbini S, Frezzotti M, Gandolfi S, Vincent C, Scarchilli C, Vittuari L, Fily M (2008) Historical behaviour of Dome C and Talos Dome (East Antarctica) as investigated by snow accumulation and ice velocity measurements. Glob Planet Change 60:576–588

    Article  Google Scholar 

  • Van de Berg WJ, Van den Broeke MR, Reijmer C, Van Meijgaard E (2006) Reassessment of the Antarctic surface mass balance using calibrated output of a regional atmospheric climate model. J Geophys Res. doi:10.1029/2005JD006495

    Google Scholar 

  • Van den Broeke MR, Michael R, Jan-Gunnar W, Elisabeth I, Jean Francis P, Lars K, Trond E, Louk C (1999) Climate variables along a traverse line in Dronning Maud Land, East Antarctica. J Glaciol 45:295–302

    Article  Google Scholar 

  • Van Wessem JM, Reijmer CH, Morlighem M, Mouginot J, Rignot E, Medley B, Joughin I, Wouters B, Depoorter MA, Bamber JL, Lenaerts JTM, van de Berg WJ, van den Broeke MR, van Meijgaard E (2014) Improved representation of East Antarctic surface mass balance in a regional atmospheric climate model. J Glaciol 60:761–770. doi:10.3189/2014JoG14J051

    Article  Google Scholar 

  • Vaughan D, Bamber J, Giovinetto M, Russell J, Cooper A (1999) Reassessment of net surface mass balance in Antarctica. J Clim 45:933–946

    Article  Google Scholar 

  • Velicogna I (2009) Increasing rates of ice mass loss from the Greenland and Antarctic ice sheets revealed by GRACE. Geophys Res Lett. doi:10.1029/2009GL040222

    Google Scholar 

  • Watanabe O (1975) Density and hardness of snow in Mizuho Plateau-West Enderby Land in 1970–1971. JARE Data Rep 27((Glaciol 2)):187–235

    Google Scholar 

  • Watanabe O (1978) Distribution of surface features of snow cover in Mizuho Plateau. Mem Natl Inst Polar Res (Spec Issue) 7:44–62

    Google Scholar 

  • Wingham DJ, Shepherd A, Muir A, Marshall GJ (2006) Mass balance of the Antarctic ice sheet. Philos Trans R Soc A364:1627–1635

    Article  Google Scholar 

  • Zwally HJ, Giovinetto MB (2011) Overview and assessment of Antarctic Ice-Sheet mass balance estimates: 1992–2009. Surv Geophys 32:351–376

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank National Institute of Polar Research for providing net accumulation data, Shin Sugiyama for providing snow density data, Roger J. Braithwaite and Shuangye Wu for improving the language of the paper, and two reviewers for their helpful comments and advices. The project was funded by National Key Basic Research Program of China (2013CBA01804), the Natural Science Foundation of China (41206175, 41171052), State Key Laboratory of Cryospheric Science, Cold and Arid Regions Environmental and Engineering Research Institute, CAS (SKLCS-2012-08 and SKLCS-OP-2013-01), the State Oceanic Administration (CHINARE2012-02-02), the Ministry of Education (20110091110025 and 1082020904), and China Postdoctoral Science Foundation (2014M551952).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yetang Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Hou, S., Sun, W. et al. Recent surface mass balance from Syowa Station to Dome F, East Antarctica: comparison of field observations, atmospheric reanalyses, and a regional atmospheric climate model. Clim Dyn 45, 2885–2899 (2015). https://doi.org/10.1007/s00382-015-2512-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-015-2512-6

Keywords

Navigation