Advertisement

Climate Dynamics

, Volume 45, Issue 9–10, pp 2485–2498 | Cite as

Improvements in the representation of the Indian summer monsoon in the NCEP climate forecast system version 2

  • Rodrigo J. BombardiEmail author
  • Edwin K. Schneider
  • Lawrence Marx
  • Subhadeep Halder
  • Bohar Singh
  • Ahmed B. Tawfik
  • Paul A. Dirmeyer
  • James L. KinterIII
Article

Abstract

A new triggering mechanism for deep convection based on the heated condensation framework (HCF) is implemented into the National Centers for Environmental Prediction climate forecast system version 2 (CFSv2). The new trigger is added as an additional criterion in the simplified Arakawa–Schubert scheme for deep convection. Seasonal forecasts are performed to evaluate the influence of the new triggering mechanism in the representation of the Indian summer monsoon in the CFSv2. The HCF trigger improves the seasonal representation of precipitation over the Indian subcontinent. The new triggering mechanism leads to a significant, albeit relatively small, improvement in the bias of seasonal precipitation totals. In addition, the new trigger improves the representation of the seasonal precipitation cycle including the monsoon onset, and the probability distribution of precipitation intensities. The mechanism whereby the HCF improves convection over India seems to be related not only to a better representation of the background state of atmospheric convection but also to an increase in the frequency in which SAS is triggered. As a result, there was an increase in convective precipitation over India favored by the availability of moist convective instability. The increase in precipitation intensity leads to a reduction in the dry bias.

Keywords

Trigger function CFSv2 Indian summer monsoon Seasonal predictability Convection 

Notes

Acknowledgments

We thank the support from the National Monsoon Mission, Ministry of Earth Sciences, Government of India. We also thank the support from NSF (0830068), NOAA (NA09OAR4310058) and NASA (NNX09AN50G). We thank the two anonymous reviewers for their suggestions for the improvement of this manuscript. In addition, we thank the European Centre for Medium-Range Weather Forecasts (ECMWF) for making available the ERA-interim reanalysis and the National Aeronautics and Space Administration (NASA) for making available the MERRA reanalysis and the TRMM analysis. This work used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant number ACI-1053575.

References

  1. Bombardi RJ, Carvalho LMV (2009) IPCC global coupled model simulations of the South America monsoon system. Clim Dyn 33:893–916. doi: 10.1007/s00382-008-0488-1 CrossRefGoogle Scholar
  2. Chao WC (2012) Correction of excessive precipitation over steep and high mountains in a GCM. J Atmos Sci 69:1547–1561. doi: 10.1175/JAS-D-11-0216.1 CrossRefGoogle Scholar
  3. Chao WC (2013) Catastrophe-concept-based cumulus parameterization: correction of systematic errors in the precipitation diurnal cycle over land in a GCM. J Atmos Sci 70:3599–3614. doi: 10.1175/JAS-D-13-022.1 CrossRefGoogle Scholar
  4. Dee DP, Uppala SM, Simmons AJ et al (2011) The ERA-interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597. doi: 10.1002/qj.828 CrossRefGoogle Scholar
  5. Fasullo J, Webster PJ (2002) Hydrological signatures relating the Asian summer monsoon and ENSO. J Clim 15:3082–3095. doi: 10.1175/1520-0442(2002)015<3082:HSRTAS>2.0.CO;2 CrossRefGoogle Scholar
  6. Griffies SM, Harrison MJ, Pacanowski RC, Rosati A (2004) A technical guide to MOM4. GFDL ocean group technical report no. 5. 281Google Scholar
  7. Han J, Pan H-L (2011) Revision of convection and vertical diffusion schemes in the NCEP global forecast system. Weather Forecast 26:520–533. doi: 10.1175/WAF-D-10-05038.1 CrossRefGoogle Scholar
  8. Hong S-Y, Pan H-L (1998) Convective trigger function for a mass-flux cumulus parameterization scheme. Mon Weather Rev 126:2599–2620CrossRefGoogle Scholar
  9. Huffman GJ, Bolvin DT, Nelkin EJ et al (2007) The TRMM multisatellite precipitation analysis (TMPA): quasi-global, multiyear, combined-sensor precipitation estimates at Fine Scales. J Hydrometeorol 8:38–55. doi: 10.1175/JHM560.1 CrossRefGoogle Scholar
  10. Joseph PV, Eischeid JK, Pyle RJ (1994) Interannual variability of the onset of the Indian summer monsoon and its association with atmospheric features, El Niño, and sea surface temperature anomalies. J Clim 7:81–105. doi: 10.1175/1520-0442(1994)007<0081:IVOTOO>2.0.CO;2 CrossRefGoogle Scholar
  11. Kang I-S, Yang Y-M, Tao W-K (2014) GCMs with implicit and explicit representation of cloud microphysics for simulation of extreme precipitation frequency. Clim Dyn. doi: 10.1007/s00382-014-2376-1 Google Scholar
  12. Kumar S, Hazra A, Goswami BN (2013) Role of interaction between dynamics, thermodynamics and cloud microphysics on summer monsoon precipitating clouds over the Myanmar Coast and the Western Ghats. Clim Dyn 43:911–924. doi: 10.1007/s00382-013-1909-3 CrossRefGoogle Scholar
  13. Liebmann B, Marengo JA (2001) Interannual variability of the rainy season and rainfall in the Brazilian Amazon Basin. J Clim 14:4308–4318. doi: 10.1175/1520-0442(2001)014<4308:IVOTRS>2.0.CO;2 CrossRefGoogle Scholar
  14. Moorthi S, Suarez MJ (1992) Relaxed Arakawa–Schubert. A parameterization of moist convection for general circulation models. Mon Weather Rev 120:978–1002. doi: 10.1175/1520-0493(1992)120<0978:RASAPO>2.0.CO;2 CrossRefGoogle Scholar
  15. Pan H-L, Wu W-S (1995) Implementing a mass flux convective parameterization package for the NMC medium range forecast model. NMC Off Note 409. http://www.emc.ncep.no
  16. Pokhrel S, Chaudhari HS, Saha SK et al (2012) ENSO, IOD and Indian summer monsoon in NCEP climate forecast system. Clim Dyn 39:2143–2165. doi: 10.1007/s00382-012-1349-5 CrossRefGoogle Scholar
  17. Rienecker MM, Suarez MJ, Todling R, et al. (2008) The GEOS-5 data as- similation system—documentation of versions 5.0.1 and 5.1.0, and 5.2.0. NASA Tech. Rep. Series on global modeling and data assimilation, NASA/TM-2008-104606/Vol 27Google Scholar
  18. Rienecker MM, Suarez MJ, Gelaro R et al (2011) MERRA: NASA’s modern-era retrospective analysis for research and applications. J Clim 24:3624–3648. doi: 10.1175/JCLI-D-11-00015.1 CrossRefGoogle Scholar
  19. Rienecker MM, Dee D, Woollen J, et al. (2012) Atmospheric reanalyses—recent progress and prospects for the future. NASA Tech. Rep. Series on Global Modeling and Data Assimilation, NASA/TM–2012-104606/Vol 29Google Scholar
  20. Saha S, Nadiga S, Thiaw C et al (2006) The NCEP climate forecast system. J Clim 19:3483–3517. doi: 10.1175/JCLI3812.1 CrossRefGoogle Scholar
  21. Saha S, Moorthi S, Pan H-L et al (2010) The NCEP climate forecast system reanalysis. Bull Am Meteorol Soc 91:1015–1057. doi: 10.1175/2010BAMS3001.1 CrossRefGoogle Scholar
  22. Saha S, Moorthi S, Wu X et al (2014a) The NCEP climate forecast system version 2. J Clim. doi: 10.1175/JCLI-D-12-00823.1 Google Scholar
  23. Saha SK, Pokhrel S, Chaudhari HS et al (2014b) Improved simulation of Indian summer monsoon in latest NCEP climate forecast system free run. Int J Climatol 34:1628–1641. doi: 10.1002/joc.3791 CrossRefGoogle Scholar
  24. Silva GAM, Dutra LMM, da Rocha RP et al (2014) Preliminary analysis on the global features of the NCEP CFSv2 seasonal hindcasts. Adv Meteorol 2014:1–21. doi: 10.1155/2014/695067 Google Scholar
  25. Smith RB, Minder JR, Nugent AD et al (2012) Orographic precipitation in the tropics: the Dominica experiment. Bull Am Meteorol Soc 93:1567–1579. doi: 10.1175/BAMS-D-11-00194.1 CrossRefGoogle Scholar
  26. Stevens B (2005) Atmospheric moist convection. Annu Rev Earth Planet Sci 33:605–643. doi: 10.1146/annurev.earth.33.092203.122658 CrossRefGoogle Scholar
  27. Suhas E, Zhang GJ (2014) Evaluation of trigger functions for convective parameterization schemes using observations. J Clim. doi: 10.1175/JCLI-D-13-00718.1 Google Scholar
  28. Tawfik AB, Dirmeyer PA (2014) A process-based framework for quantifying the atmospheric preconditioning of surface-triggered convection. Geophys Res Lett 41:173–178. doi: 10.1002/2013GL057984 CrossRefGoogle Scholar
  29. Yang S, Zhang Z, Kousky VE et al (2008) Simulations and seasonal prediction of the Asian summer monsoon in the NCEP climate forecast system. J Clim 21:3755–3775. doi: 10.1175/2008JCLI1961.1 CrossRefGoogle Scholar
  30. Zhu J, Shukla J (2013) The role of air–sea coupling in seasonal prediction of Asia–Pacific summer monsoon rainfall. J Clim 26:5689–5697. doi: 10.1175/JCLI-D-13-00190.1 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Rodrigo J. Bombardi
    • 1
    Email author
  • Edwin K. Schneider
    • 1
    • 2
  • Lawrence Marx
    • 2
  • Subhadeep Halder
    • 1
  • Bohar Singh
    • 1
  • Ahmed B. Tawfik
    • 1
    • 2
  • Paul A. Dirmeyer
    • 1
    • 2
  • James L. KinterIII
    • 1
    • 2
  1. 1.Department of Atmospheric, Oceanic, and Earth Sciences, College of ScienceGeorge Mason UniversityFairfaxUSA
  2. 2.Center for Ocean–Land–Atmosphere StudiesInstitute of Global Environment and SocietyCalvertonUSA

Personalised recommendations