Spatial and temporal characteristics of heat waves over Central Europe in an ensemble of regional climate model simulations

Abstract

The study examines the capability of regional climate models (RCMs) to reproduce spatial and temporal characteristics of severe Central European heat waves. We analysed an ensemble of seven RCM simulations driven by the ERA-40 reanalysis over the 1961–2000 period, in comparison to observed data from the E-OBS gridded dataset. Heat waves were defined based on regionally significant excesses above the model-specific 95 % quantile of summer daily maximum air temperature distribution and their severity was described using the extremity index. The multi-model mean reflected the observed characteristics of heat waves quite well, but considerable differences were found among the individual RCMs. The RCMs had a tendency to simulate too many heat waves that were shorter but their temperature peak was more pronounced on average compared to E-OBS. Deficiencies were found also in reproducing interannual and interdecadal variability of heat waves. Using as an example the most severe Central European heat wave that occurred in 1994, we demonstrate that its magnitude was underestimated in all RCMs and that this bias was linked to overestimation of precipitation during and before the heat wave. By contrast, a simulated precipitation deficit during summer 1967 in the majority of RCMs contributed to an “erroneous” heat wave. This shows that land–atmosphere coupling is crucial for developing severe heat waves and its proper reproduction in climate models is essential for obtaining credible scenarios of future heat waves.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Baldocchi D, Falge E, Gu L et al (2001) FLUXNET : a new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull Am Meteorol Soc 82:2415–2434. doi:10.1175/1520-0477(2001)082<2415:FANTTS>2.3.CO;2

    Article  Google Scholar 

  2. Barriopedro D, Fischer EM, Luterbacher J et al (2011) The hot summer of 2010: redrawing the temperature record map of Europe. Science 332:220–224. doi:10.1126/science.1201224

    Article  Google Scholar 

  3. Beniston M, Stephenson DB, Christensen OB et al (2007) Future extreme events in European climate: an exploration of regional climate model projections. Clim Change 81:71–95. doi:10.1007/s10584-006-9226-z

    Article  Google Scholar 

  4. Black E, Blackburn M, Harrison G et al (2004) Factors contributing to the summer 2003 European heatwave. Weather 59:217–223. doi:10.1256/wea.74.04

    Article  Google Scholar 

  5. Blenkinsop S, Jones PD, Dorling SR, Osborn TJ (2009) Observed and modelled influence of atmospheric circulation on central England temperature extremes. Int J Climatol 29:1642–1660. doi:10.1002/joc.1807

    Article  Google Scholar 

  6. Cattiaux J, Yiou P, Vautard R (2012) Dynamics of future seasonal temperature trends and extremes in Europe: a multi-model analysis from CMIP3. Clim Dyn 38:1949–1964. doi:10.1007/s00382-011-1211-1

    Article  Google Scholar 

  7. Christensen JH, Christensen OB (2007) A summary of the PRUDENCE model projections of changes in European climate by the end of this century. Clim Change 81:7–30. doi:10.1007/s10584-006-9210-7

    Article  Google Scholar 

  8. Christensen JH, Boberg F, Christensen OB, Lucas-Picher P (2008) On the need for bias correction of regional climate change projections of temperature and precipitation. Geophys Res Lett 35:L20709. doi:10.1029/2008GL035694

    Article  Google Scholar 

  9. Christensen J, Kjellström E, Giorgi F et al (2010) Weight assignment in regional climate models. Clim Res 44:179–194. doi:10.3354/cr00916

    Article  Google Scholar 

  10. De Bono A, Giuliani G, Kluser S, Peduzzi P (2004) Impacts of summer 2003 heat wave in Europe. UNEP/DEWA/GRID-Europe. Environ Alert Bull 2:1–4

    Google Scholar 

  11. Della-Marta PM, Luterbacher J, Weissenfluh H et al (2007) Summer heat waves over western Europe 1880–2003, their relationship to large-scale forcings and predictability. Clim Dyn 29:251–275. doi:10.1007/s00382-007-0233-1

    Article  Google Scholar 

  12. Fischer EM, Schär C (2010) Consistent geographical patterns of changes in high-impact European heatwaves. Nat Geosci 3:398–403. doi:10.1038/ngeo866

    Article  Google Scholar 

  13. Fischer EM, Seneviratne SI, Lüthi D, Schär C (2007) Contribution of land-atmosphere coupling to recent European summer heat waves. Geophys Res Lett 34:L06707. doi:10.1029/2006GL029068

    Google Scholar 

  14. Francis JA, Vavrus SJ (2012) Evidence linking Arctic amplification to extreme weather in mid-latitudes. Geophys Res Lett 39:L06801. doi:10.1029/2012GL051000

    Article  Google Scholar 

  15. Giorgi F, Jones C, Asrar G (2009) Addressing climate information needs at the regional level: the CORDEX framework. WMO Bull 58:175–183

    Google Scholar 

  16. Hartmann DL (1994) Global physical climatology. Academic Press, San Diego

    Google Scholar 

  17. Haylock MR, Hofstra N, Klein Tank AMG et al (2008) A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. J Geophys Res 113:D20119. doi:10.1029/2008JD010201

    Article  Google Scholar 

  18. Holtanová E, Mikšovský J, Kalvová J et al (2012) Performance of ENSEMBLES regional climate models over Central Europe using various metrics. Theor Appl Climatol 108:463–470. doi:10.1007/s00704-011-0542-5

    Article  Google Scholar 

  19. International Panel on Climate Change (IPCC) (2013) Climate change 2013: the physical science basis. Contribution of working Group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, and New York, NY p 1535

    Google Scholar 

  20. Jaeger EB, Seneviratne SI (2010) Impact of soil moisture–atmosphere coupling on European climate extremes and trends in a regional climate model. Clim Dyn 36:1919–1939. doi:10.1007/s00382-010-0780-8

    Article  Google Scholar 

  21. Jung M, Reichstein M, Margolis HA et al (2011) Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations. J Geophys Res 116:G00J07. doi:10.1029/2010JG001566

    Google Scholar 

  22. Kjellström E, Bärring L, Jacob D et al (2007) Modelling daily temperature extremes: recent climate and future changes over Europe. Clim Change 81:249–265. doi:10.1007/s10584-006-9220-5

    Article  Google Scholar 

  23. Kjellström E, Boberg F, Castro M et al (2010) Daily and monthly temperature and precipitation statistics as performance indicators for regional climate models. Clim Res 44:135–150. doi:10.3354/cr00932

    Article  Google Scholar 

  24. Klein Tank AMG, Wijngaard JB, Konnen GP et al (2002) Daily dataset of 20th-century surface air temperature and precipitation series for the European Climate Assessment. Int J Climatol 22:1441–1453. doi:10.1002/joc.773

    Article  Google Scholar 

  25. Kyselý J (2008) Influence of the persistence of circulation patterns on warm and cold temperature anomalies in Europe: analysis over the 20th century. Glob Planet Change 62:147–163. doi:10.1016/j.gloplacha.2008.01.003

    Article  Google Scholar 

  26. Lhotka O, Kyselý J (2014) Characterizing joint effects of spatial extent, temperature magnitude and duration of heat waves and cold spells over Central Europe. J Climatol, Int. doi:10.1002/joc.4050

    Google Scholar 

  27. Lorenz P, Jacob D (2010) Validation of temperature trends in the ENSEMBLES regional climate model runs driven by ERA40. Clim Res 44:167–177. doi:10.3354/cr00973

    Article  Google Scholar 

  28. Meehl GA, Tebaldi C (2004) More intense, more frequent, and longer lasting heat waves in the 21st century. Science 305:994–997. doi:10.1126/science.1098704

    Article  Google Scholar 

  29. Mueller B, Seneviratne SI (2014) Systematic land climate and evapotranspiration biases in CMIP5 simulations. Geophys Res Lett 41:128–134. doi:10.1002/2013GL058055

    Article  Google Scholar 

  30. Němec L (2012) The Czech temperature record in Dobřichovice on 20 August 2012. Meteorol Zprávy 65:145–148

    Google Scholar 

  31. Nikulin G, Kjellström E, Hansson U et al (2011) Evaluation and future projections of temperature, precipitation and wind extremes over Europe in an ensemble of regional climate simulations. Tellus A 63A:41–55. doi:10.1111/j.1600-0870.2010.00466.x

    Article  Google Scholar 

  32. Plavcová E, Kyselý J (2011) Evaluation of daily temperatures in Central Europe and their links to large-scale circulation in an ensemble of regional climate models. Tellus A 63A:763–781. doi:10.1111/j.1600-0870.2011.00514.x

    Article  Google Scholar 

  33. Plavcová E, Kyselý J (2012) Atmospheric circulation in regional climate models over Central Europe: links to surface air temperature and the influence of driving data. Clim Dyn 39:1681–1695. doi:10.1007/s00382-011-1278-8

    Article  Google Scholar 

  34. Samuelsson P, Jones CG, Willén U et al (2011) The Rossby Centre Regional Climate model RCA3: model description and performance. Tellus A 63A:4–23. doi:10.1111/j.1600-0870.2010.00478.x

    Article  Google Scholar 

  35. Sanchez-Gomez E, Somot S, Déqué M (2009) Ability of an ensemble of regional climate models to reproduce weather regimes over Europe-Atlantic during the period 1961–2000. Clim Dyn 33:723–736. doi:10.1007/s00382-008-0502-7

    Article  Google Scholar 

  36. Schneidereit A, Schubert S, Vargin P et al (2012) Large-scale flow and the long-lasting blocking high over Russia: summer 2010. Mon Weather Rev 140:2967–2981. doi:10.1175/MWR-D-11-00249.1

    Article  Google Scholar 

  37. Seneviratne SI, Nicholls N, Easterling D et al (2012) Changes in climate extremes and their impacts on the natural physical environment. In: Field CB et al (ed) Managing the risks of extreme events and disasters to advance climate change adaptation. A special report of working groups I and II of the intergovernmental panel on climate change (IPCC). Cambridge University Press, Cambridge, New York, pp 109–230

  38. Small EE, Kurc SA (2003) Tight coupling between soil moisture and the surface radiation budget in semiarid environments: implications for land-atmosphere interactions. Water Resour Res 39:1–14. doi:10.1029/2002WR001297

    Google Scholar 

  39. Stegehuis A, Vautard R, Ciais P, Teuling R (2014) Simulating European heatwaves with WRF: a multi-physics ensemble approach. Geophys Res Abstr EGU 16:12613

    Google Scholar 

  40. Uppala SM, Kallberg PW, Simmons AJ et al (2005) The ERA-40 re-analysis. Q J R Meteorol Soc 131:2961–3012. doi:10.1256/qj.04.176

    Article  Google Scholar 

  41. van der Linden P, Mitchell JFB (2009) ENSEMBLES: climate change and its impacts: summary of research and results from the ENSEMBLES project. Met Office Hadley Centre, Exeter

    Google Scholar 

  42. van Meijgaard E, van Ulft LH, Bosveld FC et al (2008) The KNMI regional atmospheric climate model RACMO version 2.1. Tech report; TR—302 43

  43. Vautard R, Gobiet A, Jacob D et al (2013) The simulation of European heat waves from an ensemble of regional climate models within the EURO-CORDEX project. Clim Dyn 41:2555–2575. doi:10.1007/s00382-013-1714-z

    Article  Google Scholar 

  44. Wilks DS (2011) Statistical methods in the atmospheric sciences, 3rd edn. Elsevier, Oxford

  45. Zentralanstalt für Meteorologie und Geodynamik (ZAMG) (2013) New temperature record: 40.5 °C in Bad Deutsch-Altenburg. http://www.zamg.ac.at/cms/de/klima/news/neuer-hitze-rekord-40-5deg-c-in-bad-deutsch-altenburg. Accessed 16 Jan 2014

Download references

Acknowledgments

The RCM data were obtained from the ENSEMBLES project database funded within the EU-FP6 (http://ensemblesrt3.dmi.dk/). We also acknowledge the E-OBS dataset from the same project (http://ensembles-eu.metoffice.com) and the data providers in the ECA&D project (http://www.ecad.eu). The study was supported by the Czech Science Foundation, project P209/10/2265. We thank anonymous reviewers for useful comments that helped improve the original manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ondřej Lhotka.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lhotka, O., Kyselý, J. Spatial and temporal characteristics of heat waves over Central Europe in an ensemble of regional climate model simulations. Clim Dyn 45, 2351–2366 (2015). https://doi.org/10.1007/s00382-015-2475-7

Download citation

Keywords

  • Heat waves
  • Regional climate models
  • Land–atmosphere coupling
  • Spatial characteristics
  • Interannual variability
  • ENSEMBLES project