Increasing temperature forcing reduces the Greenland Ice Sheet’s response time scale

Abstract

Damages from sea level rise, as well as strategies to manage the associated risk, hinge critically on the time scale and eventual magnitude of sea level rise. Satellite observations and paleo-data suggest that the Greenland Ice Sheet (GIS) loses mass in response to increased temperatures, and may thus contribute substantially to sea level rise as anthropogenic climate change progresses. The time scale of GIS mass loss and sea level rise are deeply uncertain, and are often assumed to be constant. However, previous ice sheet modeling studies have shown that the time scale of GIS response likely decreases strongly with increasing temperature anomaly. Here, we map the relationship between temperature anomaly and the time scale of GIS response, by perturbing a calibrated, three-dimensional model of GIS behavior. Additional simulations with a profile, higher-order, ice sheet model yield time scales that are broadly consistent with those obtained using the three-dimensional model, and shed light on the feedbacks in the ice sheet system that cause the time scale shortening. Semi-empirical modeling studies that assume a constant time scale of sea level adjustment, and are calibrated to small preanthropogenic temperature and sea level changes, may underestimate future sea level rise. Our analysis suggests that the benefits of reducing greenhouse gas emissions, in terms of avoided sea level rise from the GIS, may be greatest if emissions reductions begin before large temperature increases have been realized. Reducing anthropogenic climate change may also allow more time for design and deployment of risk management strategies by slowing sea level contributions from the GIS.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Alley RB, Andrews JT, Brigham-Grette J, Clarke G, Cuffey K, Fitzpatrick J, Funder S, Marshall S, Miller G, Mitrovica J, Muhs DR, Otto-Bliesner BL, Polyak L, White JWC (2010) History of the Greenland Ice Sheet: paleoclimatic insights. Quatern Sci Rev 29:1728–1756

    Article  Google Scholar 

  2. Anthoff D, Nicholls RJ, Tol RS (2010) The economic impact of substantial sea-level rise. Mitig Adapt Strat Glob Change 15:321–335

    Article  Google Scholar 

  3. Applegate PJ, Kirchner N, Stone EJ, Keller K, Greve R (2012) An assessment of key model parametric uncertainties in projections of Greenland Ice Sheet behavior. Cryosphere 6:589–606

    Article  Google Scholar 

  4. Bamber JL, Layberry RL, Gogineni S (2001) A new ice thickness and bed data set for the Greenland Ice Sheet: 1. Measurement, data reduction, and errors. J Geophys Res Atmos 106:33773–33780

    Article  Google Scholar 

  5. Bamber J, Griggs J, Hurkmans R, Dowdeswell J, Gogineni S, Howat I, Mouginot J, Paden J, Palmer S, Rignot E, Steinhage D (2013) A new bed elevation dataset for Greenland. Cryosphere 7:499–510

    Article  Google Scholar 

  6. Bartholomew I, Nienow P, Mair D, Hubbard A, King MA, Sole A (2010) Seasonal evolution of subglacial drainage and acceleration in a Greenland outlet glacier. Nat Geosci 3:408–411

    Article  Google Scholar 

  7. Belleflamme A, Fettweis X, Lang C, Erpicum M (2013) Current and future atmospheric circulation at 500 hPa over Greenland simulated by the CMIP3 and CMIP5 global model. Clim Dyn 41:2061–2080

    Article  Google Scholar 

  8. Bhat SK, Haran M, Olson R, Keller K (2012) Inferring likelihoods and climate system characteristics from climate models and multiple tracers. Environmetrics 23:345–362

    Article  Google Scholar 

  9. Bindschadler RA, Nowicki S, Abe-Ouchi A, Aschwanden A, Choi H, Fastook J, Granzow G, Greve R, Gutowski G, Herzfeld U, Jackson C, Johnson J, Khroulev C, Levermann A, Lipscomb WH, Martin MA, Morlighem M, Parizek BR, Pollard D, Price SF, Ren D, Saito F, Sato T, Seddik H, Seroussi H, Takahashi K, Walker R, Wang WL (2013) Ice-sheet model sensitivities to environmental forcing and their use in projecting future sea level (the SeaRISE project). J Glaciol 59:195–224

    Article  Google Scholar 

  10. Born A, Nisancioglu K (2012) Melting of Northern Greenland during the last interglaciation. Cryosphere 6:1239–1250

    Article  Google Scholar 

  11. Bougamont M, Bamber JL, Ridley JK, Gladstone RM, Greuell W, Hanna E, Payne AJ, Rutt I (2007) Impact of model physics on estimating the surface mass balance of the Greenland Ice Sheet. Geophys Res Lett 34:L17501

    Article  Google Scholar 

  12. Braithwaite RJ (1995) Positive degree-day factors for ablation on the Greenland Ice Sheet studied by energy-balance modelling. J Glaciol 41:153–160

    Google Scholar 

  13. Chang W, Applegate PJ, Haran M, Keller K (2014) Probabilistic calibration of a Greenland Ice Sheet model using spatially resolved synthetic observations: toward projections of ice mass loss with uncertainties. Geosci Model Dev 7:1933–1943

    Article  Google Scholar 

  14. Christianson K, Parizek BR, Alley RB, Horgan HJ, Jacobel RW, Anandakrishnan S, Keisling BA, Craig BD, Muto A (2013) Ice sheet grounding zone stabilization due to till compaction. Geophys Res Lett 40:5406–5411

    Article  Google Scholar 

  15. Church JA, Clark PU, Cazenave A, Gregory JM, Jevrejeva S, Levermann A, Merrifield MA, Milne GA, Nerem RS, Nunn PD, Payne AJ, Pfeffer WT, Stammer D, Unnikrishnan AS (2013) Sea level change. In Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V and Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA

  16. Deschamps P, Durand N, Bard E, Hamelin B, Camoin G, Thomas AL, Henderson GM, Okuno J, Yokoyama Y (2012) Ice-sheet collapse and sea-level rise at the Bolling warming 14,600 years ago. Nature 483:559–564

    Article  Google Scholar 

  17. Deser C, Knutti R, Solomon S, Phillips AS (2012) Communication of the role of natural variability in future North American climate. Nat Clim Change 2:775–779

    Article  Google Scholar 

  18. Dyurgerov MB, Meier MF (2005) Glaciers and the changing earth system: a 2004 snapshot. Institute of Arctic and Alpine Research Occasional Paper 58

  19. Edwards TL, Fettweis X, Gagliardini O, Gillet-Chaulet F, Goelzer H, Gregory JM, Hoffman M, Huybrechts P, Payne AJ, Perego M, Price S, Quiquet A, Ritz C (2014) Effect of uncertainty in surface mass balance-elevation feedback on projections of the future sea level contribution of the Greenland Ice Sheet. Cryosphere 8:195–208

    Article  Google Scholar 

  20. Fettweis X, Franco B, Tedesco M, van Angelen JH, Lenaerts JTM, van den Broeke MH, Gallee H (2013) Estimating the Greenland Ice Sheet surface mass balance contribution to future sea level rise using the regional atmospheric climate model MAR. Cryosphere 7:469–489

    Article  Google Scholar 

  21. Fretwell P, Pritchard HD, Vaughan DG, Bamber J, Barrand N, Bell R, Bianchi C, Bingham R, Blankenship D, Casassa G, Catania G, Callens D, Conway H, Cook AJ, Corr HFJ, Damaske D, Damm V, Ferraccioli F, Forsberg R, Fujita S, Gim Y, Gogineni P, Griggs JA, Hindmarsh RCA, Holmlund P, Holt JW, Jacobel RW, Jenkins A, Jokat W, Jordan T, King EC, Kohler J, Krabill W, Riger-Kusk M, Langley KA, Leitchenkov G, Leuschen C, Luyendyk BP, Matsuoka K, Mouginot J, Nitsche FO, Nogi Y, Nost OA, Popov SV, Rignot E, Rippin DM, Rivera A, Roberts J, Ross N, Siegert MJ, Smith AM, Steinhage D, Studinger M, Sun B, Tinto BK, Welch BC, Wilson D, Young DA, Xiangbin C, Zirizzotti A (2013) Bedmap2: improved ice bed, surface and thickness datasets for Antarctica. Cryosphere 7:375–393

    Article  Google Scholar 

  22. Frieler K, Meinshausen M, Mengel M, Braun N, Hare W (2012) A scaling approach to probabilistic assessment of regional climate change. J Clim 25:3117–3144

    Article  Google Scholar 

  23. Fyke J (2011) Simulation of the global coupled climate/ice sheet system over millennial timescales. Unpublished Ph. D. dissertation, Victoria University of Wellington

  24. Fyke J, Weaver A, Pollard D, Eby M, Carter L, Mackintosh A (2011) A new coupled ice sheet/climate model: description and sensitivity to model physics under Eemian, Last Glacial Maximum, late Holocene and modern climate conditions. Geosci Model Dev 4:117–136

    Article  Google Scholar 

  25. Fyke J, Eby M, Mackintosh A, Weaver A (2014) Impact of climate sensitivity and polar amplification on projections of Greenland Ice Sheet loss. Clim Dyn 43:2249–2260

    Article  Google Scholar 

  26. Gregoire LJ, Payne AJ, Valdes PJ (2012) Deglacial rapid sea level rises caused by ice-sheet saddle collapses. Nature 487:219–223

    Article  Google Scholar 

  27. Gregory J, Huybrechts P (2006) Ice-sheet contributions to future sea-level change. Philos Trans R Soc A Math Phys Eng Sci 364:1709–1732

    Article  Google Scholar 

  28. Greve R (1997) Application of a polythermal three-dimensional ice sheet model to the Greenland Ice Sheet: response to steady-state and transient climate scenarios. J Clim 10:901–918

    Article  Google Scholar 

  29. Greve R, Saito F, Abe-Ouchi A (2011) Initial results of the SeaRISE numerical experiments with the models SICOPOLIS and IcIES for the Greenland Ice Sheet. Ann Glaciol 52:23–30

    Article  Google Scholar 

  30. Grinsted A, Moore JC, Jevrejeva S (2010) Reconstructing sea level from paleo and projected temperatures 200 to 2100 AD. Clim Dyn 34:461–472

    Article  Google Scholar 

  31. Hallegatte S, Green C, Nicholls RJ, Corfee-Morlot J (2013) Future flood losses in major coastal cities. Nat Clim Change 3:802–806

    Article  Google Scholar 

  32. Huybrechts P, de Wolde J (1999) The dynamic response of the Greenland and Antarctic ice sheets to multiple-century climatic warming. J Clim 12:2169–2188

    Article  Google Scholar 

  33. Jevrejeva S, Moore JC, Grinsted A (2012) Sea level projections to AD2500 with a new generation of climate change scenarios. Global Planet Change 80:14–20

    Article  Google Scholar 

  34. Joughin I, Das SB, King MA, Smith BE, Howat IM, Moon T (2008) Seasonal speedup along the western flank of the Greenland Ice Sheet. Science 320:781–783

    Article  Google Scholar 

  35. Kemp AC, Horton BP, Donnelly JP, Mann ME, Vermeer M, Rahmstorf S (2011) Climate related sea-level variations over the past two millennia. Proc Natl Acad Sci 108:11017–11022

    Article  Google Scholar 

  36. Kirchner N, Hutter K, Jakobsson M, Gyllencreutz R (2011) Capabilities and limitations of numerical ice sheet models: a discussion for Earth-scientists and modelers. Quatern Sci Rev 30:3691–3704

    Article  Google Scholar 

  37. Kump LR, Kasting JF, Crane RG (2010) The earth system, 3rd edn. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  38. Lempert R, Sriver RL, Keller K (2012) Characterizing uncertain sea level rise projections to support investment decisions. California Energy Commission White Paper CEC-500-2012-056

  39. Lenton TM, Held H, Kriegler E, Hall JW, Lucht W, Rahmstorf S, Schellnhuber HJ (2008) Tipping elements in the Earth’s climate system. Proc Natl Acad Sci 105:1786–1793

    Article  Google Scholar 

  40. Letréguilly A, Huybrechts P, Reeh N (1991) Steady-state characteristics of the Greenland Ice Sheet under different climates. J Glaciol 37:149–157

    Google Scholar 

  41. Lythe MB, Vaughan DG (2001) BEDMAP: a new ice thickness and subglacial topographic model of Antarctica. J Geophys Res 106:11335–11351

    Article  Google Scholar 

  42. Manabe S, Stouffer RJ (1980) Sensitivity of a global climate model to an increase of CO2 concentration in the atmosphere. J Geophys Res Oceans (1978–2012) 85:5529–5554

    Article  Google Scholar 

  43. Meinshausen M, Smith SJ, Calvin K, Daniel JS, Kainuma M, Lamarque J, Matsumoto K, Montzka S, Raper S, Riahi K, Thomson A, Velders GJM, van Vuuren DPP (2011) The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim Change 109:213–241

    Article  Google Scholar 

  44. Mengel M, Levermann A (2014) Ice plug prevents irreversible discharge from East Antarctica. Nat Clim Change 4:451–455

    Article  Google Scholar 

  45. Moberg A, Sonechkin DM, Holmgren K, Datsenko NM, Karlén W (2005) Highly variable Northern Hemisphere temperatures reconstructed from low-and high-resolution proxy data. Nature 433:613–617

    Article  Google Scholar 

  46. Nicholls RJ, Tol RS, Vafeidis AT (2008a) Global estimates of the impact of a collapse of the West Antarctic ice sheet: an application of FUND. Clim Change 91:171–191

    Article  Google Scholar 

  47. Nicholls RJ, Hanson S, Herweijer C, Patmore N, Hallegatte S, Corfee-Morlot J, Chateau J, Muir-Wood R (2008b) Ranking port cities with high exposure and vulnerability to climate extremes: exposure estimates. OECD Environment working papers 1

  48. Nicholls RJ, Marinova N, Lowe JA, Brown S, Vellinga P, de Gusmao D, Hinkel J, Tol RSJ (2011) Sea level rise and its possible impacts given a ‘beyond 4 °C world’ in the twenty-first century. Philos Trans R Soc A 369:161–181

    Article  Google Scholar 

  49. Nowicki S, Bindschadler RA, Abe-Ouchi A, Aschwanden A, Bueler E, Choi H, Fastook J, Granzow G, Greve R, Gutowski G, Herzfeld U, Jackson C, Johnson J, Khroulev C, Larour E, Levermann A, Lipscomb WH, Martin MA, Morlighem M, Parizek BR, Pollard D, Price SF, Ren D, Rignot E, Saito F, Sato T, Seddik H, Seroussi H, Takahashi K, Walker R, Wang WL (2013) Insights into spatial sensitivities of ice mass response to environmental change from the SeaRISE ice sheet modeling project II: Greenland. J Geophys Res Earth Surf 118:1025–1044

    Article  Google Scholar 

  50. Olson R, Sriver R, Haran M, Chang W, Urban NM, Keller K (2013) What is the effect of unresolved internal climate variability on climate sensitivity estimates? J Geophys Res 118:4348–4358

    Google Scholar 

  51. Parizek BR, Alley RB (2004) Implications of increased Greenland surface melt under global-warming scenarios: ice-sheet simulations. Quatern Sci Rev 23:1013–1027

    Article  Google Scholar 

  52. Parizek BR, Alley RB, MacAyeal DR (2005) The PSU/UofC finite-element thermomechanical flowline model of ice-sheet evolution. Cold Reg Sci Technol 42:145–168

    Article  Google Scholar 

  53. Parizek B, Alley R, Dupont T, Walker R, Anandakrishnan S (2010) Effect of orbital-scale climate cycling and meltwater drainage on ice sheet grounding line migration. J Geophys Res Earth Surf 115:F01011

    Article  Google Scholar 

  54. Parizek B, Christianson K, Anandakrishnan S, Alley R, Walker R, Edwards R, Wolfe D, Bertini G, Rinehart S, Bindschadler R, Nowicki SMJ (2013) Dynamic (in)stability of Thwaites Glacier, West Antarctica. J Geophys Res Earth Surf 118:638–655

    Article  Google Scholar 

  55. Radic V, Hock R (2010) Regional and global volumes of glaciers derived from statistical upscaling of glacier inventory data. J Geophys Res 115:F01010

    Google Scholar 

  56. Rahmstorf S (2007) A semi-empirical approach to projecting future sea-level rise. Science 315:368–370

    Article  Google Scholar 

  57. Rahmstorf S, Perrette M, Vermeer M (2012) Testing the robustness of semi-empirical sea level projections. Clim Dyn 39:861–875

    Article  Google Scholar 

  58. Riahi K, Rao S, Krey V, Cho C, Chirkov V, Fischer G, Kindermann G, Nakicenovic N, Rafaj P (2011) RCP 8.5—a scenario of comparatively high greenhouse gas emissions. Clim Change 109:33–57

    Article  Google Scholar 

  59. Rignot E, Box JE, Burgess E, Hanna E (2008) Mass balance of the Greenland Ice Sheet from 1958 to 2007. Geophys Res Lett 35:L20502

    Article  Google Scholar 

  60. Ritz C, Fabre A, Letréguilly A (1996) Sensitivity of a Greenland Ice Sheet model to ice flow and ablation parameters: consequences for the evolution through the last climatic cycle. Clim Dyn 13:11–23

    Article  Google Scholar 

  61. Robinson A, Calov R, Ganopolski A (2010) An efficient regional energy–moisture balance model for simulation of the Greenland Ice Sheet response to climate change. Cryosphere 4:129–144

    Article  Google Scholar 

  62. Robinson A, Calov R, Ganopolski A (2011) Greenland Ice Sheet model parameters constrained using simulations of the Eemian Interglacial. Clim Past 7:381–396

    Article  Google Scholar 

  63. Robinson A, Calov R, Ganopolski A (2012) Multistability and critical thresholds of the Greenland Ice Sheet. Nat Clim Change 2:429–432

    Article  Google Scholar 

  64. Shannon SR, Payne AJ, Bartholomew ID, van den Broeke MR, Edwards TL, Fettweis X, Gagliardini O, Gillet-Chaulet F, Goelzer H, Hoffman MJ, Huybrechts P, Mair DWF, Nienow PW, Perego M, Price SF, Paul Smeets CJP, Sole AJ, van de Wal RSW, Zwinger T (2013) Enhanced basal lubrication and the contribution of the Greenland Ice Sheet to future sea-level rise. Proc US Natl Acad Sci 110:14156–14161

    Article  Google Scholar 

  65. Sriver RL, Urban NM, Olson R, Keller K (2012) Toward a physically plausible upper bound of sea-level rise projections. Clim Change 115:893–902

    Article  Google Scholar 

  66. Stainforth DA, Aina T, Christensen C, Collins M, Faull N, Frame DJ, Kettleborough JA, Knight S, Martin A, Murphy JM, Piani C, Sexton D, Smith LA, Spicer RA, Thorpe AJ, Allen MR (2005) Uncertainty in predictions of the climate response to rising levels of greenhouse gases. Nature 433:403–406

    Article  Google Scholar 

  67. Stone E, Lunt D, Rutt I, Hanna E (2010) Investigating the sensitivity of numerical model simulations of the modern state of the Greenland ice-sheet and its future response to climate change. Cryosphere 4(3):397–417

    Article  Google Scholar 

  68. Straneo F, Hamilton GS, Sutherland DA, Stearns LA, Davidson F, Hammill MO, Stenson GB, Rosing-Asvid A (2010) Rapid circulation of warm subtropical waters in a major glacial fjord in East Greenland. Nat Geosci 3:182–186

    Article  Google Scholar 

  69. Sugden DE, Marchant DR, Denton GH (1993) The case for a stable East Antarctic ice sheet: the background. Geogr Ann Ser A Phys Geogr 75:151–154

    Article  Google Scholar 

  70. Sugiyama M, Nicholls RJ, Vafeidis A (2008) Estimating the economic cost of sea-level rise. MIT joint program on the science and policy of global change report 156

  71. van de Berg WJ, van den Broeke M, Ettema J, van Meijgaard E, Kaspar F (2011) Significant contribution of insolation to Eemian melting of the Greenland Ice Sheet. Nat Geosci 4:679–682

    Article  Google Scholar 

  72. van de Wal RSW (1996) Mass-balance modelling of the Greenland Ice Sheet: a comparison of an energy-balance and a degree-day model. Ann Glaciol 23:36–45

    Google Scholar 

  73. Vermeer M, Rahmstorf S (2009) Global sea level linked to global temperature. Proc Natl Acad Sci 106:21527–21532

    Article  Google Scholar 

  74. Vinther BM, Andersen KK, Jones PD, Briffa KR, Cappelen J (2006) Extending Greenland temperature records into the late eighteenth century. J Geophys Res 111:D11105

    Article  Google Scholar 

  75. Vinther BM, Buchardt SL, Clausen HB, Dahl-Jensen D, Johnsen SJ, Fisher DA, Koerner RM, Raynaud D, Lipenkov V, Andersen KK, Blunier T, Rasmussen SO, Steffensen JP, Svensson AM (2009) Holocene thinning of the Greenland Ice Sheet. Nature 461:385–388

    Article  Google Scholar 

  76. Yohe G, Neumann J, Marshall P, Ameden H (1996) The economic cost of greenhouse-induced sea-level rise for developed property in the United States. Clim Change 32:387–410

    Article  Google Scholar 

  77. Zwally HJ, Abdalati W, Herring T, Larson K, Saba J, Steffen K (2002) Surface melt-induced acceleration of Greenland ice-sheet flow. Science 297:218–222

    Article  Google Scholar 

Download references

Acknowledgments

Jeremy Fyke, Aslak Grinsted, Ralf Greve, Ben Horton, Nina Kirchner, Johan Kleman, Chris Little, Michael Oppenheimer, Hans-Peter Plag, Dave Pollard, Alex Robinson, Kelsey Ruckert, and Gary Yohe provided discussions and comments on draft versions of this paper. We thank Ralf Greve for providing his ice sheet model, SICOPOLIS, freely on the Web (sicopolis.greveweb.net). Nina Kirchner, Philipp Hancke, Martin Jakobsson, and Björn Eriksson provided access to computing resources at Stockholm University, Sweden. We also thank the editor, Jian Lu, and two anonymous reviewers for their comments on the manuscript. This work was partly supported by the US Department of Energy, Office of Science, Biological and Environmental Research Program, Integrated Assessment Program, through grant DE-SC0005171; the National Science Foundation through the Network for Sustainable Climate Risk Mangement (SCRiM) under NSF cooperative agreement GEO-1240507; and the Penn State Center for Climate Risk Management. Support for BRP and RBA was provided by the Center for Remote Sensing of Ice Sheets (NSF OPP 0424589), NSF grant AGS 1338832, and NASA through Grant NNX10AI04G. We also acknowledge the climate modeling groups that participated in the Coupled Model Intercomparison Project Phase 5 (CMIP5; http://cmip-pcmdi.llnl.gov/cmip5/), which supplied the climate model output used in this paper; these groups are listed in Electronic Supplementary Materials Table 1. The US Department of Energy’s Program for Climate Model Diagnosis and Intercomparison, in partnership with the Global Organization for Earth System Science Portals, provides coordinating support for CMIP5. Some figure colors were drawn from www.colorbrewer.org by Cynthia Brewer at Pennsylvania State University. All opinions and errors are ours.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Patrick J. Applegate.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1358 kb)

Supplementary material 2 (PDF 75 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Applegate, P.J., Parizek, B.R., Nicholas, R.E. et al. Increasing temperature forcing reduces the Greenland Ice Sheet’s response time scale. Clim Dyn 45, 2001–2011 (2015). https://doi.org/10.1007/s00382-014-2451-7

Download citation

Keywords

  • Greenland ice sheet
  • Glaciology
  • Ice sheet modeling
  • Semi-empirical
  • Sea level