Barbosa SM, Scotto MG, Alonso AM (2011) Summarising changes in air temperature over Central Europe by quantile regression and clustering. Nat Hazards Earth Syst Sci 11(12):3227–3233. doi: 10.5194/nhess-11-3227-2011. http://www.nat-hazards-earth-syst-sci.net/11/3227/2011/
Barriopedro D, Fischer EM, Luterbacher J, Trigo RM, García-Herrera R (2011) The hot summer of 2010: Redrawing the temperature record map of Europe. Science 332(6026):220–224. doi: 10.1126/science.1201224. http://www.sciencemag.org/content/332/6026/220.abstract. http://www.sciencemag.org/content/332/6026/220.full.pdf
Beniston M (2004) The 2003 heat wave in Europe: A shape of things to come? An analysis based on Swiss climatological data and model simulations. Geophys Res Lett. doi:10.1029/2003GL018857
Google Scholar
Beniston M, Stephenson D, Christensen O, Ferro C, Frei C, Goyette S, Halsnaes K, Holt T, Jylhä K, Koffi B, Palutikof J, Scholl R, Semmler T, Woth K (2007) Future extreme events in European climate: an exploration of regional climate model projections. Clim Change 81(1):71–95. doi:10.1007/s10584-006-9226-z
Article
Google Scholar
Burkett VR, Suarez AG, Bindi M, Conde C, Mukerji R, Prather MJ, Clair ALS, Yohe GW (2014) Point of departure. In: Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea MD, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL (eds) Climate change 2014: impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. Contribution of working group II to the fifth assessment report of the intergovernmental panel of climate change. Cambridge University Press, Cambridge, pp 169–194
Google Scholar
Cattiaux J, Douville H, Peings Y (2013) European temperatures in CMIP5: origins of present-day biases and future uncertainties. Clim Dyn 41(11–12):2889–2907. doi:10.1007/s00382-013-1731-y
Article
Google Scholar
Christensen J, Carter T, Rummukainen M, Amanatidis G (2007) Evaluating the performance and utility of regional climate models: the PRUDENCE project. Clim Change 81(1):1–6. doi:10.1007/s10584-006-9211-6
Article
Google Scholar
Clark RT, Murphy JM, Brown SJ (2010) Do global warming targets limit heatwave risk. Geophys Res Lett. doi:10.1029/2010GL043898
Google Scholar
Coumou D, Rahmstorf S (2012) A decade of weather extremes. Nat Clim Change 2(7):491–496. doi:10.1038/nclimate1452
Google Scholar
Cowan T, Purich A, Perkins S, Pezza A, Boschat G, Sadler K (2014) More frequent, longer, and hotter heat waves for Australia in the twenty-first century. J Clim 27(15):5851–5871. doi:10.1175/JCLI-D-14-00092.1
Article
Google Scholar
Diffenbaugh NS, Pal JS, Giorgi F, Gao X (2007) Heat stress intensification in the Mediterranean climate change hotspot. Geophys Res Lett. doi:10.1029/2007GL030000
Google Scholar
Fischer EM, Schär C (2010) Consistent geographical patterns of changes in high-impact European heatwaves. Nat Geosci 3(6):398–403. doi:10.1038/ngeo866
Article
Google Scholar
Haylock MR, Hofstra N, Klok EJ, Jones PD, New M (2008) A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. J Geophys Res Atmos. doi:10.1029/2008JD010201
Google Scholar
Hewitt CD (2004) Ensembles-based predictions of climate changes and their impacts. Eos Trans Am Geophys Union 85(52):566–566. doi:10.1029/2004EO520005
Article
Google Scholar
Hirschi M, Seneviratne SI, Alexandrov V, Boberg F, Boroneant C, Christensen OB, Formayer H, Orlowsky B, Stepanek P (2011) Observational evidence for soil-moisture impact on hot extremes in southeastern Europe. Nat Geosci 4(1):17–21. doi:10.1038/ngeo1032
Article
Google Scholar
Hoffman ME, Feldman M (1981) Calculation of the thermal response of buildings by the total thermal time constant method. Build Environ 16(2):71–85. doi:10.1016/0360-1323(81)90023-8. http://www.sciencedirect.com/science/article/pii/0360132381900238
Jaeger EB, Seneviratne SI (2011) Impact of soil moisture-atmosphere coupling on European climate extremes and trends in a regional climate model. Clim Dyn 36(9–10):1919–1939. doi:10.1007/s00382-010-0780-8
Article
Google Scholar
Kenyon J, Hegerl GC (2008) Influence of modes of climate variability on global temperature extremes. J Clim 21(15):3872–3889. doi:10.1175/2008JCLI2125.1
Article
Google Scholar
Kharin V, Zwiers F, Zhang X, Wehner M (2013) Changes in temperature and precipitation extremes in the CMIP5 ensemble. Clim Change 119(2):345–357. doi:10.1007/s10584-013-0705-8
Article
Google Scholar
Lau NC, Nath MJ (2014) Model simulation and projection of European heat waves in present-day and future climates. J Clim 27(10):3713–3730. doi:10.1175/JCLI-D-13-00284.1
Article
Google Scholar
Meehl GA, Tebaldi C (2004) More intense, more frequent, and longer lasting heat waves in the 21st century. Science 305(5686):994–997. doi:10.1126/science.1098704. http://www.sciencemag.org/content/305/5686/994.abstract. http://www.sciencemag.org/content/305/5686/994.full.pdf
Peings Y, Cattiaux J, Douville H (2013) Evaluation and response of winter cold spells over western Europe in CMIP5 models. Clim Dyn 41(11–12):3025–3037. doi:10.1007/s00382-012-1565-z
Article
Google Scholar
Perkins SE, Alexander LV (2012) On the measurement of heat waves. J Clim 26(13):4500–4517. doi:10.1175/JCLI-D-12-00383.1
Article
Google Scholar
Quesada B, Vautard R, Yiou P, Hirschi M, Seneviratne SI (2012) Asymmetric European summer heat predictability from wet and dry southern winters and springs. Nat Clim Change 2(10):736–741. doi:10.1038/nclimate1536
Article
Google Scholar
Savić S, Selakov A, Milosević D (2014) Cold and warm air temperature spells during the winter and summer seasons and their impact on energy consumption in urban areas. Nat Hazards 70:1–15. doi:10.1007/s11069-014-1074-y
Article
Google Scholar
Schär C, Vidale PL, Lüthi D, Frei C, Häberli C, Liniger MA, Appenzeller C (2004) The role of increasing temperature variability in European summer heatwaves. Nature 427(6972):332–336. doi:10.1038/nature02300
Article
Google Scholar
Schlünzen KH, Grawe D, Bohnenstengel SI, Schlüter I, Koppmann R (2011) Joint modelling of obstacle induced and mesoscale changes-current limits and challenges. J Wind Eng Ind Aerodyn 99(4):217–225. http://www.sciencedirect.com/science/article/pii/S0167610511000110
Seneviratne SI, Lüthi D, Litschi M, Schär C (2006) Land-atmosphere coupling and climate change in Europe. Nature 443(7108):205–209. doi:10.1038/nature05095
Article
Google Scholar
Sillmann J, Kharin VV, Zwiers FW, Zhang X, Bronaugh D (2013) Climate extremes indices in the CMIP5 multimodel ensemble: Part 2. Future climate projections. J Geophys Res Atmos 118(6):2473–2493. doi:10.1002/jgrd.50188
Article
Google Scholar
Taylor KE, Stouffer RJ, Meehl GA (2011) An overview of CMIP5 and the experiment design. Bull Am Meteor Soc 93(4):485–498. doi:10.1175/BAMS-D-11-00094.1
Article
Google Scholar
Teuling AJ, Hirschi M, Ohmura A, Wild M, Reichstein M, Ciais P, Buchmann N, Ammann C, Montagnani L, Richardson AD, Wohlfahrt G, Seneviratne SI (2009) A regional perspective on trends in continental evaporation. Geophys Res Lett. doi:10.1029/2008GL036584
Google Scholar
Van Vliet MTH, Yearsley JR, Ludwig F, Vogele S, Lettenmaier DP, Kabat P (2012) Vulnerability of US and European electricity supply to climate change. Nat Clim Change 2(9):676–681. doi:10.1038/nclimate1546
Article
Google Scholar
Voldoire A, Sanchez-Gomez E, Salas y Mélia D, Decharme B, Cassou C, Sénési S, Valcke S, Beau I, Alias A, Chevallier M, Déqué M, Deshayes J, Douville H, Fernandez E, Madec G, Maisonnave E, Moine MP, Planton S, Saint-Martin D, Szopa S, Tyteca S, Alkama R, Belamari S, Braun A, Coquart L, Chauvin F (2013) The CNRM-CM51 global climate model description and basic evaluation. Clim Dyn 40(9–10):2091–2121. doi:10.1007/s00382-011-1259-y
Article
Google Scholar
Van Vuuren D, Edmonds J, Kainuma M, Riahi K, Thomson A, Hibbard K, Hurtt G, Kram T, Krey V, Lamarque JF, Masui T, Meinshausen M, Nakicenovic N, Smith S, Rose S (2011) The representative concentration pathways: an overview. Clim Change 109(1–2):5–31. doi:10.1007/s10584-011-0148-z
Article
Google Scholar
Weisheimer A, Palmer TN (2005) Changing frequency of occurrence of extreme seasonal temperatures under global warming. Geophys Res Lett. doi:10.1029/2005GL023365
Google Scholar