Climate Dynamics

, Volume 44, Issue 9–10, pp 2825–2837 | Cite as

Global eastward propagation signals associated with the 4–5-year ENSO cycle

  • S.-Y. Simon WangEmail author
  • Xianan Jiang
  • Boniface Fosu


Longitude-time evolution of sea surface temperature anomalies (SSTA) reveals a slow southeastward propagation from the western North Pacific (WNP) around 20°N to the Niño-3.4 region in the equatorial Central Pacific. The propagation is manifested as a narrow, southwest-northeast oriented SSTA band across the subtropical North Pacific, and its journey takes about 2–3 years. The propagating SSTA appears to engage the initiation of the El Niño–Southern Oscillation (ENSO). The anomalies of surface winds, sea level pressure, outgoing longwave radiation, and velocity potential all exhibit a concurrent and distinct eastward propagation, one that appears to be circumglobal and is coupled with the predominant 4–5 year frequency of the ENSO cycle. It is suggested that the previously found warming/cooling in the Indian Ocean induced by El Niño/La Niña, the progressive SSTA and wind anomalies across the Indian Ocean towards the WNP, and the predominant 4–5-year frequency of the North Pacific Oscillation collectively contribute to the reported SSTA propagation . The findings implicate that monitoring the SSTA propagation from the WNP towards the tropical central Pacific could be useful in tracking the ENSO development.


ENSO cycle SST propagation Precursor Prediction WNP 



Useful discussions with Michelle L'Heureux and TC Chen are highly appreciated. This study was supported by the NASA Grant NNX13AC37G and by the United States Agency for International Development Grant EEM-A-00-38310-00001.

Supplementary material

382_2014_2422_MOESM1_ESM.pdf (454 kb)
Supplementary material 1 (PDF 453 kb)


  1. Alexander MA, Vimont DJ, Chang P, Scott JD (2010) The impact of extratropical atmospheric variability on ENSO: testing the seasonal footprinting mechanism using coupled model experiments. J Clim 23(11):2885–2901CrossRefGoogle Scholar
  2. Anderson BT (2003) Tropical Pacific sea surface temperatures and preceding sea level pressure anomalies in the subtropical North Pacific. J Geophys Res 108(D23). doi: 10.1029/2003JD003805
  3. Barnett T (1983) Interaction of the monsoon and Pacific trade wind system at interannual time scales part I: the equatorial zone. Mon Wea Rev 111(4):756–773CrossRefGoogle Scholar
  4. Behringer DW, Ji M, Leetmaa A (1998) An improved coupled model for ENSO prediction and implications for ocean initialization part I: the ocean data assimilation system. Mon Wea Rev 126(4):1013–1021CrossRefGoogle Scholar
  5. Bejarano L, Jin F-F (2008) Coexistence of equatorial coupled modes of ENSO*. J Clim 21(12):3051–3067CrossRefGoogle Scholar
  6. Cayan DR (1992) Latent and sensible heat flux anomalies over the Northern Oceans: the connection to monthly atmospheric circulation. J Clim 5(4):354–369CrossRefGoogle Scholar
  7. Chang P, Zhang L, Saravanan R, Vimont DJ, Chiang JC, Ji L, Seidel H, Tippett MK (2007) Pacific meridional mode and El Nino-Southern oscillation. Geophys Res Lett 34(16):L16608CrossRefGoogle Scholar
  8. Chiang JCH, Vimont DJ (2004) Analogous Pacific and Atlantic Meridional modes of tropical atmosphere–ocean variability. J Clim 17(21):4143–4158CrossRefGoogle Scholar
  9. Chowdary JS, Xie S-P, Luo J-J, Hafner J, Behera S, Masumoto Y, Yamagata T (2011) Predictability of Northwest Pacific climate during summer and the role of the tropical Indian Ocean. Clim Dyn 36(3–4):607–621CrossRefGoogle Scholar
  10. Chowdary JS, Xie S-P, Tokinaga H, Okumura YM, Kubota H, Johnson N, Zheng X-T (2012) Interdecadal variations in ENSO teleconnection to the Indo-Western Pacific for 1870–2007*. J Clim 25(5):1722–1744CrossRefGoogle Scholar
  11. Clarke AJ (2008) An introduction to the dynamics of El Nino and the Southern oscillation. Academic Press, London, p 308Google Scholar
  12. Clarke AJ, Van Gorder S (2003) Improving El Niño prediction using a space-time integration of Indo-Pacific winds and equatorial Pacific upper ocean heat content. Geophys Res Lett 30(7):1399CrossRefGoogle Scholar
  13. Clarke AJ, Liu X, Van Gorder S (1998) Dynamics of the biennial oscillation in the equatorial Indian and far western Pacific Oceans. J Clim 11(5):987–1001CrossRefGoogle Scholar
  14. Dickey JO, Marcus SL, de Viron O (2003) Coherent interannual and decadal variations in the atmosphere–ocean system. Geophys Res Lett 30(11):1573CrossRefGoogle Scholar
  15. Du Y, Yang L, Xie S-P (2011) Tropical Indian Ocean influence on Northwest Pacific tropical cyclones in summer following strong El Niño*. J Clim 24(1):315–322CrossRefGoogle Scholar
  16. Enfield DB, Mayer DA (1997) Tropical Atlantic sea surface temperature variability and its relation to El Niño-Southern oscillation. J Geophys Res Ocean (1978–2012) 102(C1):929–945CrossRefGoogle Scholar
  17. Gutzler DS, Harrison D (1987) The structure and evolution of seasonal wind anomalies over the near-equatorial eastern Indian and western Pacific Oceans. Mon Wea Rev 115(1):169–192CrossRefGoogle Scholar
  18. Hendon HH (2003) Indonesian rainfall variability: impacts of ENSO and local air–sea interaction. J Clim 16(11):1775–1790CrossRefGoogle Scholar
  19. Huang G, Hu K, Xie S-P (2010) Strengthening of tropical Indian Ocean teleconnection to the Northwest Pacific since the mid-1970s: an atmospheric GCM study*. J Clim 23(19):5294–5304CrossRefGoogle Scholar
  20. Huang W-R, Chen T-C, Wang S-Y (2012) Co-variability of poleward propagating atmospheric energy with tropical and higher-latitude climate oscillations. Clim Dyn 39(7–8):1905–1912CrossRefGoogle Scholar
  21. Iacobucci A, Noullez A (2005) A frequency selective filter for short-length time series. Comput Econ 25:75–102CrossRefGoogle Scholar
  22. Izumo T, Vialard J, Lengaigne M, de Boyer Montegut C, Behera SK, Luo J-J, Cravatte S, Masson S, Yamagata T (2010) Influence of the state of the Indian Ocean dipole on the following year’s El Nino. Nat Geosci 3(3):168–172CrossRefGoogle Scholar
  23. Jin FF, An SI (1999) Thermocline and zonal advective feedbacks within the equatorial ocean recharge oscillator model for ENSO. Geophys Res Lett 26(19):2989–2992CrossRefGoogle Scholar
  24. Kalnay E et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteor Soc 77(3):437–471CrossRefGoogle Scholar
  25. Klein SA, Soden BJ, Lau N-C (1999) Remote sea surface temperature variations during ENSO: evidence for a tropical atmospheric bridge. J Clim 12(4):917–932CrossRefGoogle Scholar
  26. Lin H, Derome J, Greatbatch RJ, Andrew Peterson K, Lu J (2002) Tropical links of the Arctic oscillation. Geophys Res Lett 29(20):1943CrossRefGoogle Scholar
  27. Linkin ME, Nigam S (2008) The north pacific oscillation-west Pacific teleconnection pattern: mature-phase structure and winter impacts. J Clim 21(9):1979–1997CrossRefGoogle Scholar
  28. Mann M, Park J (1996) Greenhouse warming and changes in the seasonal cycle of temperature: model versus observations. Geophys Res Lett 23(10):1111–1114CrossRefGoogle Scholar
  29. McPhaden MJ (1999a) El Nino: the child prodigy of 1997–98. Nature 398(6728):559–562CrossRefGoogle Scholar
  30. McPhaden MJ (1999b) Genesis and evolution of the 1997–98 El Niño. Science 283(5404):950–954CrossRefGoogle Scholar
  31. Meehl GA (1987) The annual cycle and interannual variability in the tropical Pacific and Indian Ocean regions. Mon Wea Rev 115(1):27–50CrossRefGoogle Scholar
  32. Meyers G, McIntosh P, Pigot L, Pook M (2007) The years of El Niño, La Niña, and interactions with the tropical Indian Ocean. J Clim 20(13):2872–2880CrossRefGoogle Scholar
  33. Neelin JD, Battisti DS, Hirst AC, Jin FF, Wakata Y, Yamagata T, Zebiak SE (1998) ENSO theory. J Geophys Res Ocean (1978–2012) 103(C7):14261–14290CrossRefGoogle Scholar
  34. Penland C, Sardeshmukh PD (1995) The optimal growth of tropical sea surface temperature anomalies. J Clim 8(8):1999–2024CrossRefGoogle Scholar
  35. Rodríguez-Fonseca B, Polo I, García-Serrano J, Losada T, Mohino E, Mechoso CR, Kucharski F (2009) Are Atlantic Niños enhancing Pacific ENSO events in recent decades? Geophys Res Lett 36(20):L20705CrossRefGoogle Scholar
  36. Rogers JC (1981) The North Pacific oscillation. J Climatol 1(1):39–57CrossRefGoogle Scholar
  37. Smith TM, Reynolds RW, Peterson TC, Lawrimore J (2008) Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J Clim 21(10):2283–2296CrossRefGoogle Scholar
  38. Takayabu YN, Iguchi T, Kachi M, Shibata A, Kanzawa H (1999) Abrupt termination of the 1997–98 El Nino in response to a Madden–Julian oscillation. Nature 402(6759):279–282CrossRefGoogle Scholar
  39. Taylor KE, Stouffer RJ, Meehl GA (2011) An overview of CMIP5 and the experiment design. Bull Am Meteor Soc 93(4):485–498CrossRefGoogle Scholar
  40. Tourre YM, White WB (1997) Evolution of the ENSO signal over the Indo-Pacific domain*. J Phys Oceanogr 27(5):683–696CrossRefGoogle Scholar
  41. Vialard J, Menkes C, Boulanger J-P, Delecluse P, Guilyardi E, McPhaden MJ, Madec G (2001) A model study of oceanic mechanisms affecting equatorial Pacific sea surface temperature during the 1997–98 El Niño. J Phys Oceanogr 31(7):1649–1675CrossRefGoogle Scholar
  42. Vimont DJ, Battisti DS, Hirst AC (2001) Footprinting: a seasonal connection between the tropics and mid-latitudes. Geophys Res Lett 28(20):3923–3926CrossRefGoogle Scholar
  43. Vimont DJ, Wallace JM, Battisti DS (2003) The seasonal footprinting mechanism in the Pacific: implications for ENSO. J Clim 16(16):2668–2675CrossRefGoogle Scholar
  44. Walker GT, Bliss EW (1932) World weather V. Mem Roy Meteor Soc 4:53–84Google Scholar
  45. Wallace JM, Gutzler DS (1981) Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon Wea Rev 109(4):784–812CrossRefGoogle Scholar
  46. Wang B, Wu R, Fu X (2000) Pacific-East Asian teleconnection: how does ENSO affect East Asian climate? J Clim 13(9):1517–1536CrossRefGoogle Scholar
  47. Wang L, Chen W, Huang R (2007) Changes in the variability of North Pacific oscillation around 1975/1976 and its relationship with East Asian winter climate. J Geophys Res Atmos 112(D11):D11110CrossRefGoogle Scholar
  48. Wang S-Y, L’Heureux M, Chia H-H (2012) ENSO prediction one year in advance using western North Pacific sea surface temperatures. Geophys Res Lett 39(5):L05702Google Scholar
  49. Wang S-Y, L’Heureux M, Yoon J-H (2013) Are greenhouse gases changing ENSO precursors in the Western North Pacific? J Clim 26:6309–6322CrossRefGoogle Scholar
  50. White WB, Tourre YM, Barlow M, Dettinger M (2003) A delayed action oscillator shared by biennial, interannual, and decadal signals in the Pacific Basin. J Geophys Res 108(C3):1511–1518CrossRefGoogle Scholar
  51. Xie S-P, Annamalai H, Schott FA, McCreary JP Jr (2002) Structure and mechanisms of south Indian Ocean climate variability*. J Clim 15(8):864–878CrossRefGoogle Scholar
  52. Xie S-P, Hu K, Hafner J, Tokinaga H, Du Y, Huang G, Sampe T (2009) Indian Ocean capacitor effect on Indo-Western Pacific climate during the summer following El Niño. J Clim 22(3):730–747CrossRefGoogle Scholar
  53. Xie S-P, Du Y, Huang G, Zheng X-T, Tokinaga H, Hu K, Liu Q (2010) Decadal shift in El Niño influences on Indo-Western Pacific and East Asian climate in the 1970s*. J Clim 23(12):3352–3368CrossRefGoogle Scholar
  54. Yang J, Liu Q, Xie S-P, Liu Z, Wu L (2007) Impact of the Indian Ocean SST basin mode on the Asian summer monsoon. Geophys Res Lett 34(2):L02708CrossRefGoogle Scholar
  55. Yu J-Y, Mechoso CR, McWilliams JC, Arakawa A (2002) Impacts of the Indian Ocean on the ENSO cycle. Geophys Res Lett 29(8):4641–4644CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • S.-Y. Simon Wang
    • 1
    • 2
    Email author
  • Xianan Jiang
    • 3
  • Boniface Fosu
    • 2
  1. 1.Utah Climate CenterUtah State UniversityLoganUSA
  2. 2.Climate Sciences ProgramUtah State UniversityLoganUSA
  3. 3.Joint Institute for Regional Earth System Science and EngineeringUCLALos AngelesUSA

Personalised recommendations