Fast-track attribution assessments based on pre-computed estimates of changes in the odds of warm extremes

Abstract

Regional warming due to anthropogenic influence on the climate is expected to increase the frequency of very warm years and seasons. The growing research area of extreme event attribution has provided pertinent scientific evidence for a number of such warm events for which the forced climate response rises above internal climatic variability. Although the demand for attribution assessments is higher shortly after an event occurs, most scientific studies become available several months later. A formal attribution methodology is employed here to pre-compute the changing odds of very warm years and seasons in regions across the world. Events are defined based on the exceedence of temperature thresholds and their changing odds are measured over a range of pre-specified thresholds, which means assessments can be made as soon as a new event happens. Optimal fingerprinting provides observationally constrained estimates of the global temperature response to external forcings from which regional information is extracted. This information is combined with estimates of internal variability to construct temperature distributions with and without the effect of anthropogenic influence. The likelihood of an event is computed for each distribution and the change in the odds estimated. Analyses are conducted with seven climate models to explore the model dependency of the results. Apart from colder regions and seasons, characterised by greater internal climate variability, the odds of warm events are found to have significantly increased and temperatures above the threshold of 1-in-10 year events during 1961–1990 have become at least twice as likely to occur.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. Allen MR, Stott PA (2003) Estimating signal amplitudes in optimal fingerprinting, part I: theory. Clim Dyn 21:477–491

    Article  Google Scholar 

  2. Beaumont LJ, Pitman A, Perkins S, Zimmermann NE, Yoccoz NG, Thuiller W (2011) Impacts of climate change on the world’s most exceptional ecoregions. PNAS 108:2306–2311

    Article  Google Scholar 

  3. Bindoff NL, Stott PA, AchutaRao KM, Allen MR, Gillett N, Gutzler D, Hansingo K, Hegerl G, Hu Y, Jain S, Mokhov II, Overland J, Perlwitz J, Sebbari R, Zhang X (2013) Detection and attribution of climate change: from global to regional. In: Stocker TF et al (eds) Climate change 2013: the physical science basis. Cambridge University Press, Cambridge, pp 867–952

    Google Scholar 

  4. Cattiaux J, Yiou P (2013) US heatwaves of spring and summer 2012 from the flow-analogue perspective. In “Explaining Extreme Events of 2012 from a Climate Perspective”. Bull Am Meteorol Soc 94:S10–S13

    Google Scholar 

  5. Christidis N, Stott PA, Zwiers FW, Shiogama H, Nozawa T (2010) Probabilistic estimates of recent changes in temperature: a multi-scale attribution analysis. Clim Dyn 34:1139–1156

    Article  Google Scholar 

  6. Christidis N, Stott PA, Brown SJ (2011) The role of human activity in the recent warming of extremely warm daytime temperatures. J Clim 24:1922–1930

    Article  Google Scholar 

  7. Christidis N, Stott PA, Zwiers FW, Shiogama H, Nozawa T (2012) The contribution of anthropogenic forcings to regional changes in temperature during the last decade. Clim Dyn 39:1259–1274

    Article  Google Scholar 

  8. Christidis N, Stott PA, Hegerl GC, Betts RA (2013a) The role of land use change in the recent warming of daily extreme temperatures. Geophys Res Lett 40:589–594

    Article  Google Scholar 

  9. Christidis N, Stott PA, Scaife A, Arribas A, Jones GS, Copsey D, Knight JR, Tennant WJ (2013b) A new HadGEM3-A based system for attribution of weather and climate-related extreme events. J Clim 26:2756–2783

    Article  Google Scholar 

  10. Diffenbaugh NS, Field CB (2013) Changes in ecologically critical terrestrial climate conditions. Science 341:486–492

    Article  Google Scholar 

  11. Diffenbaugh NS, Scherer M (2013) Likelihood of July 2012 U.S. temperatures in preindustrial and current forcing regimes [in “Explaining Extreme Events of 2012 from a Climate Perspective”]. Bull Am Meteorol Soc 94:S6–S9

    Google Scholar 

  12. Dole R, Hoerling M, Perlwitz J, Eischeid J, Pegion P, Zhang T, Quan XW, Xu T, Murray D (2011) Was there a basis for anticipating the 2010 Russian heat wave? Geophys Res Lett 38. doi:10.1029/2010GL046582

  13. Dufresne JL, Foujols MA, Denvil S, Caubel A, Marti O, Aumont O, Balkanski Y, Bekki S, Bellenger H, Benshila R, Bony S, Bopp L, Braconnot P, Brockmann P, Cadule P, Cheruy F, Codron F, Cozic A, Cugnet D, de Noblet N, Duvel JP, Ethé C, Fairhead L, Fichefet T, Flavoni S, Friedlingstein P, Grandpeix JY, Guez L, Guilyardi E, Hauglustaine D, Hourdin F, Idelkadi A, Ghattas J, Joussaume S, Kageyama M, Krinner G, Labetoulle S, Lahellec A, Lefebvre MP, Lefevre F, Levy C, Li ZX, Lloyd J, Lott F, Madec G, Mancip M, Marchand M, Masson S, Meurdesoif Y, Mignot J, Musat I, Parouty S, Polcher J, Rio C, Schulz M, Swingedouw D, Szopa S, Talandier C, Terray P, Viovy N, Vuichard N (2013) Climate change projections using the IPSL-CM5 earth system model: from CMIP3 to CMIP5. Clim Dyn 40:2123–2165

    Article  Google Scholar 

  14. Gillett NP, Allen MR, Tett SFB (2000) Modelled and observed variability in atmospheric vertical temperature structure. Clim Dyn 16:49–61

    Article  Google Scholar 

  15. Gillett NP, Arora VK, Flato GM, Scinocca JF, vonSalzen K (2012) Improved constraints on 21st-century warming derived using 160 years of temperature observations. Geophys Res Lett 39. doi:10.1029/2011GL050226

  16. Giorgi F, Francisco R (2000) Uncertainties in regional climate change prediction: a regional analysis of ensemble simulations with the HADCM2 coupled AOGCM. Clim Dyn 16. doi:10.1007/PL00013733

  17. Hasselmann K (1993) Optimal fingerprints for the detection of the time dependent climate change. J Clim 6:1957–1971

    Article  Google Scholar 

  18. Hoerling M, Schubert S, Mo K et al (2013) An interpretation of the origins of the 2012 Central Great Plains drought. An assessment report of the NOAA drought task force. http://cpo.noaa.gov/ClimatePrograms/ModelingAnalysisPredictionsandProjections/MAPPTaskForces/DroughtTaskForce/2012CentralGreatPlainsDrought.aspx

  19. Jeffrey SJ, Rotstayn LD, Collier MA, Dravitzki SM, Hamalainen C, Moeseneder C, Wong KK, Syktus JI (2013) Australia’s CMIP5 submission using the CSIRO Mk3.6 model. Aust Meteorol Oceanogr J 63:1–13

    Google Scholar 

  20. Jones CD, Hughes JK, Bellouin N, Hardiman SC, Jones GS, Knight J, Liddicoat S, O’Connor FM, Andres RJ, Bell C, Boo KO, Bozzo A, Butchart N, Cadule P, Corbin KD, Doutriaux-Boucher M, Friedlingstein P, Gornall J, Gray L, Halloran PR, Hurtt G, Ingram WJ, Lamarque JF, Law RM, Meinshausen M, Osprey S, Palin EJ, Parsons Chini L, Raddatz T, Sanderson MG, Sellar AA, Schurer A, Valdes P, Wood N, Woodward S, Yoshioka M, Zerroukat M (2011) The HadGEM2-ES implementation of CMIP5 centennial simulations. Geosci Model Dev 4:543–570

    Article  Google Scholar 

  21. Jones PD, Lister DH, Osborn TJ, Harpham C, Salmon M, Morice CP (2012) Hemispheric and large-scale land surface air temperature variations: an extensive revision and an update to 2010. J Geophys Res 117. doi:10.1029/2011JD017139

  22. Jones GS, Stott PA, Christidis N (2013) Attribution of observed historical near surface temperature variations to anthropogenic and natural causes using CMIP5 simulations. J Geophys Res 118:4001–4024

    Google Scholar 

  23. Knutson TR, Zeng F, Wittenberg AT (2013a) Multi-model assessment of regional surface temperature trends. J Clim 26:8709–8743

    Article  Google Scholar 

  24. Knutson TR, Zeng F, Wittenberg AT (2013b) The extreme March–May 2012 warm anomaly over the eastern United States: global context and multimodel trend analysis [in “Explaining Extreme Events of 2012 from a Climate Perspective”]. Bull Am Meteorol Soc 94:S13–S17

    Article  Google Scholar 

  25. Kumar A, Perlwitz J, Eischeid J, Quan X, Xu T, Zhang T, Hoerling M, Jha B, Wang W (2010) Contribution of sea ice loss to Arctic amplification. Geophys Res Lett 37. doi:10.1029/2010GL045022

  26. Lewis SC, Karoly DJ (2013) Anthropogenic contributions to Australia’s record summer temperatures of 2013. Geophys Res Lett 40:3705–3709

    Article  Google Scholar 

  27. Lu J, Cai M (2009) Seasonality of polar surface warming amplification in climate simulations. Geophys Res Lett 36. doi:10.1029/2009GL040133

  28. Min SK, Hense A (2007) A Bayesian assessment of climate change using multimodel ensembles. Part II: regional and seasonal mean surface temperatures. J Clim 20:2769–2790

    Article  Google Scholar 

  29. Morak S, Hegerl GC, Christidis N (2013) Detectable changes in the frequency of temperature extremes. J Clim 26:1561–1574

    Article  Google Scholar 

  30. Myhre G, Shindell D, Bréon FM, Collins W, Fuglestvedt J, Huang J, Koch D, Lamarque JF, Lee D, Mendoza B, Nakajima T, Robock A, Stephens G, Takemura T, Zhang H (2013) Anthropogenic and natural radiative forcing. In: Stocker TF et al (eds) Climate change 2013: the physical science basis. Cambridge University Press, Cambridge, pp 659–740

    Google Scholar 

  31. NOAA (2013) National Climate Data Center state of the climate. National overview—annual 2012. http://ncdc.noaa.gov/sotc/national/2012/13

  32. Pall P, Aina T, Stone DA, Stott PA, Nozawa T, Hilberts AGJ, Lohmann D, Allen MR (2011) Anthropogenic greenhouse gas contribution to flood risk in England and Wales in autumn 2000. Nature 470:382–385

    Article  Google Scholar 

  33. Peterson TC, Stott PA, Herring S (2012) Explaining extreme events of 2011 from a climate perspective. Bull Am Meteorol Soc 93:1041–1067

    Article  Google Scholar 

  34. Peterson TC, Hoerling MP, Stott PA, Herring S (2013) Explaining extreme events of 2012 from a climate perspective. Bull Am Meteorol Soc 94:S1–S74

    Article  Google Scholar 

  35. Rahmstorf S, Coumou D (2011) Increase of extreme events in a warming world. Proc Natl Acad Sci USA 108:17905–17909

    Article  Google Scholar 

  36. Richardson R, Keenan TF, Migliavacca M, Ryu Y, Sonnentag O, Toomey M (2013) Climate change, phenology, and phonological control of vegetation feedbacks to the climate system. Agric For Meteorol 169:156–173

    Article  Google Scholar 

  37. Schmidt GA, Kelley M, Nazarenko L, Ruedy R, Russell GL, Aleinov I, Bauer M, Bauer SE, Bhat MK, Bleck R, Canuto V, Chen YH, Cheng Y, Clune TL, Del Genio A, de Fainchtein R, Faluvegi G, Hansen JE, Healy RJ, Kiang NY, Koch D, Lacis AA, LeGrande AN, Lerner J, Lo KK, Matthews EE, Menon S, Miller RL, Oinas V, Oloso AO, Perlwitz JP, Puma MJ, Putman WM, Rind D, Romanou A, Sato M, Shindell DT, Sun S, Syed RA, Tausnev N, Tsigaridis K, Unger N, Voulgarakis A, Yao MS, Jinlun Zhang (2014) Configuration and assessment of the GISS ModelE2 contributions to the CMIP5 archive. J Adv Model Earth Syst 6. doi:10.1002/2013MS000265

  38. Stone DA, Allen MR (2005) The end-to-end attribution problem: from emissions to impacts. Clim Change 71:303–318

    Article  Google Scholar 

  39. Stott PA, Stone DA, Allen MR (2004) Human contribution to the European heatwave of 2003. Nature 432:610–613

    Article  Google Scholar 

  40. Stott PA, Gillett NP, Hegerl GC, Karoly DJ, Stone DA, Zhang X, Zwiers F (2010) Detection and attribution of climate change: a regional perspective. WIREs Clim Change 1:192–211

    Google Scholar 

  41. Stott PA, Allen M, Christidis N, Dole RM, Hoerling M, Huntingford C, Pall P, Perlwitz J, Stone D (2013) Attribution of weather and climate-related extreme events. In: Asrar GR, Hurrell JW (eds) Climate Science for Serving Society: research, modeling and prediction priorities. doi:10.1007/978-94-007-6692-1_12

  42. Stouffer RJ, Hegerl GC, Tett SFB (2000) A comparison of surface air temperature variability in three 1000-year coupled ocean-atmosphere model integrations. J Clim 16:513–537

    Article  Google Scholar 

  43. Taylor K, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experimental design. Bull Am Meteorol Soc 93:485–498

    Article  Google Scholar 

  44. Voldoire A, Sanchez-Gomez E, Salas y Mélia D, Decharme B, Cassou C, Sénési S, Valcke S, Beau I, Alias A, Chevallier M, Déqué M, Deshayes J, Douville H, Fernandez E, Madec G, Maisonnave E, Moine MP, Planton S, Saint-Martin D, Szopa S, Tyteca S, Alkama R, Belamari S, Braun A, Coquart L, Chauvin F (2013) The CNRM-CM5.1 global climate model: description and basic evaluation. Clim Dyn 40:2091–2121

    Article  Google Scholar 

  45. Wen QH, Zhang X, Xu Y, Wang B (2013) Detecting human influence on extreme temperatures in China. Geophys Res Lett 40:1171–1176

    Article  Google Scholar 

  46. Zwiers FW, Zhang X, Feng Y (2011) Anthropogenic influence on long return period daily temperature extremes at regional scales. J Clim 24:881–892

    Article  Google Scholar 

Download references

Acknowledgments

We thank the two reviewers for their constructive comments. NC and PAS were supported by the Joint DECC/Defra Met Office Hadley Centre Climate Programme (GA01101) and the EUCLEIA project funded by the European Union’s Seventh Framework Programme [FP7/2007-2013] under Grant Agreement No. 607085.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Nikolaos Christidis.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Christidis, N., Stott, P.A. & Zwiers, F.W. Fast-track attribution assessments based on pre-computed estimates of changes in the odds of warm extremes. Clim Dyn 45, 1547–1564 (2015). https://doi.org/10.1007/s00382-014-2408-x

Download citation

Keywords

  • Detection and attribution
  • Regional temperature extremes
  • Anthropogenic forcings