Climate Dynamics

, Volume 45, Issue 5–6, pp 1395–1413 | Cite as

Establishing the skill of climate field reconstruction techniques for precipitation with pseudoproxy experiments

  • Juan José Gómez-Navarro
  • Johannes Werner
  • Sebastian Wagner
  • Jürg Luterbacher
  • Eduardo Zorita
Article

Abstract

This study aims at assessing the skill of several climate field reconstruction techniques (CFR) to reconstruct past precipitation over continental Europe and the Mediterranean at seasonal time scales over the last two millennia from proxy records. A number of pseudoproxy experiments are performed within the virtual reality of a regional paleoclimate simulation at 45 km resolution to analyse different aspects of reconstruction skill. Canonical Correlation Analysis (CCA), two versions of an Analog Method (AM) and Bayesian hierarchical modeling (BHM) are applied to reconstruct precipitation from a synthetic network of pseudoproxies that are contaminated with various types of noise. The skill of the derived reconstructions is assessed through comparison with precipitation simulated by the regional climate model. Unlike BHM, CCA systematically underestimates the variance. The AM can be adjusted to overcome this shortcoming, presenting an intermediate behaviour between the two aforementioned techniques. However, a trade-off between reconstruction-target correlations and reconstructed variance is the drawback of all CFR techniques. CCA (BHM) presents the largest (lowest) skill in preserving the temporal evolution, whereas the AM can be tuned to reproduce better correlation at the expense of losing variance. While BHM has been shown to perform well for temperatures, it relies heavily on prescribed spatial correlation lengths. While this assumption is valid for temperature, it is hardly warranted for precipitation. In general, none of the methods outperforms the other. All experiments agree that a dense and regularly distributed proxy network is required to reconstruct precipitation accurately, reflecting its high spatial and temporal variability. This is especially true in summer, when a specifically short de-correlation distance from the proxy location is caused by localised summertime convective precipitation events.

Keywords

Precipitation Palaeoclimate Climate reconstruction Regional climate modelling Proxy PPE 

References

  1. Annan JD, Hargreaves JC (2013) A new global reconstruction of temperature changes at the last glacial maximum. Clim Past 9(1):367–376. doi:10.5194/cp-9-367-2013 CrossRefGoogle Scholar
  2. Bunde A, Büntgen U, Ludescher J, Luterbacher J, von Storch H (2013) Is there memory in precipitation? Nat Clim Change 3(3):174–175. doi:10.1038/nclimate1830 CrossRefGoogle Scholar
  3. Casty C, Raible CC, Stocker TF, Wanner H, Luterbacher J (2007) A European pattern climatology 1766–2000. Clim Dyn 29(7–8):791–805. doi:10.1007/s00382-007-0257-6
  4. Cook E, D’Arrigo R, Mann ME (2002) A well verified multiproxy reconstruction of the winter norh atlantic oscillation index since AD 1400. J Clim 15:1754–1764Google Scholar
  5. Cook ER (2013) The old world drought atlas: Tree-ring reconstructions of past drought over Europe and the Mediterranean basin since 1200 c.e. (invited). In: American Geophysical Union, Fall Meeting 2013, abstract GC12A-05Google Scholar
  6. Cook ER, Briffa KR, Jones PD (1994) Spatial regression methods in dendroclimatology: A review and comparison of two techniques. Int J Climatol 14(4):379–402. doi:10.1002/joc.3370140404 CrossRefGoogle Scholar
  7. Cook ER, Meko DM, Stahle DW, Cleaveland MK (1999) Drought reconstructions for the continental United States. J Clim 12(4):1145–1162. doi:10.1175/1520-0442<(1999)0121145:DRFTCU>2.0.CO;2
  8. Cook ER, Woodhouse CA, Eakin CM, Meko DM, Stahle DW (2004) Long-term aridity changes in the western United States. Science 306(5698):1015–1018. doi:10.1126/science.1102586
  9. Cook ER, Anchukaitis KJ, Buckley BM, DÁrrigo RD, Jacoby GC, Wright WE (2010) Asian monsoon failure and megadrought during the last millennium. Science 328(5977):486–489. doi:10.1126/science.1185188 CrossRefGoogle Scholar
  10. Dorado-Liñán I, Gutiérrez E, Andreu-Haylesand L, Heinrich I, Helle G (2012) Potential to explain climate from tree rings in the south of the Iberian Peninsula. Clim Res 55(2):119–134. doi:10.3354/cr01126
  11. Fernández J, Sáenz J (2003) Improved field reconstruction with the analog method: searching the CCA space. Clim Res 24:199–213CrossRefGoogle Scholar
  12. Flückiger J, Monnin E, Stauffer B, Schwander J, Stocker TF, Chappellaz J, Raynaud D, Barnola JM (2002) High-resolution holocene N2O ice core record and its relationship with CH4 and CO2. Global Biogeochem Cycles 16: doi:10.1029/2001GB001417
  13. Frank D, Büntgen U, Böhm R, Maugeri M, Esper J (2007) Warmer early instrumental measurements versus colder reconstructed temperatures: shooting at the moving target. Quat Sci Rev 26:3298–3310. doi:10.1016/j.quascirev.2007.08.002 CrossRefGoogle Scholar
  14. Franke J, González-Rouco JF, Frank D, Graham NE (2010) 200 years of European temperature variability: insights from and tests of the proxy surrogate reconstruction analog method. Clim Dyn 37(1–2):133–150. doi:10.1007/s00382-010-0802-6
  15. Gandin LS, Murphy AH (1992) Equitable skill scores for categorical forecasts. Monthly Weather Rev 120(2):361–370. doi:10.1175/1520-0493(1992)120<0361:ESSFCF>2.0.CO;2
  16. Gelman A, Carlin J, Stern H, Rubin D (2003) Bayesian Data Anal, 3rd edn. Chapman and Hall, LondonGoogle Scholar
  17. Gómez-Navarro JJ, Montávez JP, Jiménez-Guerrero P, Jerez S, Lorente-Plazas R, González-Rouco JF, Zorita E (2012) Internal and external variability in regional simulations of the iberian peninsula climate over the last millennium. Clim Past 8(1):25–36. doi:10.5194/cp-8-25-2012 CrossRefGoogle Scholar
  18. Gómez-Navarro JJ, Montávez JP, Wagner S, Zorita E (2013) A regional climate palaeosimulation for europe in the period 1500–1990—part 1: model validation. Clim Past 9(4):1667–1682. doi:10.5194/cp-9-1667-2013 CrossRefGoogle Scholar
  19. Gómez-Navarro JJ, Werner J, Wagner S, Zorita E, Luterbacher J (2014) Precipitation in the past millennium in europe-extension to roman times. In: Paul A, Schulz M (eds) Integrated analysis of interglacial climate dynamics (INTERDYNAMIC), Springer Briefs in Earth SystemGoogle Scholar
  20. Jungclaus JH, Lorenz SJ, Timmreck C, Reick CH, Brovkin V, Six K, Segschneider J, Crowley TJ, Pongratz J, Krivova NA, Vieira LE, Solanki SK, Klocke D, Botzet M, Esch M, Gayler V, Haak H, Raddatz TJ, Roeckner E, Schnur R, Widmann H, Claussen M, Stevens MB, Marotzke J (2010) Climate and carbon-cycle variability over the last millennium. Clim Past 6:723–737. doi:10.5194/cp-6-723-2010 CrossRefGoogle Scholar
  21. Küttel M, Luterbacher J, Zorita E, Xoplaki E, Riedwyl N, Wanner H (2007) Testing a European winter surface temperature reconstruction in a surrogate climate. Geophys Res Lett 34(7):L07,710. doi:10.1029/2006GL027907
  22. Küttel M, Xoplaki E, Gallego D, Luterbacher J, García-Herrera R, Allan R, Barriendos M, Jones PD, Wheeler D, Wanner H (2010) The importance of ship log data: reconstructing North Atlantic, European and Mediterranean sea level pressure fields back to 1750. Clim Dyn 34(7–8):1115–1128. doi:10.1007/s00382-009-0577-9
  23. Li B, Smerdon JE (2012) Defining spatial comparison metrics for evaluation of paleoclimatic field reconstructions of the Common Era. Environmetrics 23(5):394–406. doi:10.1002/env.2142
  24. Lorenz EN (1969) Atmospheric predictability as revealed by naturally occurring analogues. J Atmos Sci 26(4):636–646. doi:10.1175/1520-0469(1969)266<36:APARBN>2.0.CO;2
  25. Luterbacher J, Schmutz C, Gyalistras D, Xoplaki E, Wanner H (1999) Reconstruction of monthly NAO and EU indices back to AD 1675. Geophys Res Lett 26(17):2745–2748. doi:10.1029/1999GL900576 CrossRefGoogle Scholar
  26. Luterbacher J, Rickli R, Tinguely C, Xoplaki E, Schüpbach E, Dietrich D, Hüsler J, Ambühl M, Pfister C, Beeli P, Dietrich U, Dannecker A, Davies T, Jones P, Slonosky V, Ogilvie A, Maheras P, Kolyva-Machera F, Martin-Vide J, Barriendos M, Alcoforado M, Nunes M, Jónsson T, Glaser R, Jacobeit J, Beck C, Philipp A, Beyer U, Kaas E, Schmith T, Bárring L, Jönsson P, Rácz L, Wanner H (2000) Monthly mean pressure reconstruction for the late maunder minimum period (AD 1675–1715). Int J Climatol 20(10):1049–1066. doi:10.1002/1097-0088(200008)20:10<1049::AID-JOC521>3.0.CO;2-6
  27. Luterbacher J, Xoplaki E, Dietrich D, Jones PD, Davies TD, Portis D, Gonzalez-Rouco JF, von Storch H, Gyalistras D, Casty C, Wanner H (2001) Extending North Atlantic oscillation reconstructions back to 1500. Atmos Sci Lett 2(1–4):114–124. doi:10.1006/asle.2002.0047
  28. Luterbacher J, Dietrich D, Xoplaki E, Grosjean M, Wanner H (2004) European seasonal and annual temperature variability, trends, and extremes since 1500. Science 303(5663):1499–1499CrossRefGoogle Scholar
  29. Luterbacher J, Liniger MA, Menzel A, Estrella N, Della-Marta PM, Pfister C, Rutishauser T, Xoplaki E (2007) Exceptional European warmth of autumn 2006 and winter 2007: historical context, the underlying dynamics, and its phenological impacts. Geophys Res Lett 34(12):L12,704. doi:10.1029/2007GL029951
  30. Luterbacher J, Koenig SJ, Franke J, van der Schrier G, Zorita E, Moberg A, Jacobeit J, Della-Marta PM, Küttel M, Xoplaki E, Wheeler D, Rutishauser T, Stössel M, Wanner H, Brázdil R, Dobrovolný P, Camuffo D, Bertolin C, Gonzalez-Rouco FJ, Wilson R, Pfister C, Limanówka D, Nordli O, Leijonhufvud L, Söderberg J, Allan R, Barriendos M, Glaser R, Riemann D, Hao Z, Zerefos CS (2010) Circulation dynamics and its influence on European and Mediterranean January–April climate over the past half millennium: results and insights from instrumental data, documentary evidence and coupled climate models. Clim Change 101(1–2):201–234. doi:10.1007/s10584-009-9782-0
  31. Mann ME, Bradley RS, Hughes MK (1998) Global-scale temperature patterns and climate forcing over the past six centuries. Nature 392(6678):779–787. doi:10.1038/33859 CrossRefGoogle Scholar
  32. Mann ME, Zhang Z, Hughes MK, Bradley RS, Miller SK, Rutherford S, Ni F (2008) Proxy-based reconstructions of hemispheric and global surface temperature variations over the past two millennia. Proceedings of the National Academy of Sciences of the United States of America 105(36):13,252–13,257. doi:10.1073/pnas.0805721105
  33. Masson-Delmotte V, Schulz M, Abe-Ouchi A, Beer J, Ganopolski A, González Rouco JF, Jansen E, Lambeck K, J L, Naish T, Osborn T, B OB, Quinn T, Ramesh R, Rojas M, Shao X, Timmermann A, (2013) Information from paleoclimate archives. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change, Cambridge University Press, CambridgeGoogle Scholar
  34. Matulla C, Zhang X, Wang XL, Wang J, Zorita E, Wagner S, von Storch H (2007) Influence of similarity measures on the performance of the analog method for downscaling daily precipitation. Clim Dyn 30(2–3):133–144. doi:10.1007/s00382-007-0277-2 Google Scholar
  35. McDonald JE, Green CR (1960) A comparison of rank-difference and product-moment correlation of precipitation data. J Geophys Res 65(1):333–336. doi:10.1029/JZ065i001p00333 CrossRefGoogle Scholar
  36. Neukom R, Luterbacher J, Villalba R, Küttel M, Frank D, Jones PD, Grosjean M, Esper J, Lopez L, Wanner H (2010) Multi-centennial summer and winter precipitation variability in southern South America. Geophys Res Lett 37(14):L14,708, doi:10.1029/2010GL043680, http://onlinelibrary.wiley.com/doi/10.1029/2010GL043680/abstract
  37. Neukom R, Gergis J, Karoly DJ, Wanner H, Curran M, Elbert J, González-Rouco F, Linsley BK, Moy AD, Mundo I, Raible CC, Steig EJ, van Ommen T, Vance T, Villalba R, Zinke J, Frank D (2014) Inter-hemispheric temperature variability over the past millennium. Nat Clim Change 4(5):362–367. doi:10.1038/nclimate2174 CrossRefGoogle Scholar
  38. PAGES 2k consortium (2013) Continental-scale temperature variability during the past two millennia. Nat Geosci 6(5):339–346. doi:10.1038/ngeo1797
  39. Pauling A, Luterbacher J, Casty C, Wanner H (2006) Five hundred years of gridded high-resolution precipitation reconstructions over Europe and the connection to large-scale circulation. Clim Dyn 26(4):387–405. doi:10.1007/s00382-005-0090-8
  40. Phipps SJ, McGregor HV, Gergis J, Gallant AJE, Neukom R, Stevenson S, Ackerley D, Brown JR, Fischer MJ, van Ommen TD (2013) Paleoclimate data-model comparison and the role of climate forcings over the past 1500 years. J Clim 26:6915–6936. doi:10.1175/JCLI-D-12-00108.1
  41. Pinto JG, Raible CC (2012) Past and recent changes in the North Atlantic oscillation. Wiley Interdiscip Rev Clim Change 3(1):79–90. doi:10.1002/wcc.150
  42. Pongratz J, Reick C, Raddatz T, Claussen M (2008) A reconstruction of global agricultural areas and land cover for the last millennium. Global Biogeochem Cycles 22(3):GB3018. doi:10.1029/2007GB003153 CrossRefGoogle Scholar
  43. Raible CC, Casty C, Luterbacher J, Pauling A, Esper J, Frank DC, Bun̈tgen U, Roesch AC, Tschuck P, Wild M, Vidale PL, Schär C, Wanner H (2006) Climate variability-observations, reconstructions, and model simulations for the Atlantic-European and Alpine region from 1500–2100 AD, predictability and climate risks. In: Wanner H, Grosjean M, Röthlisberger R, Xoplaki E (eds) Climate variability. Springer, Netherlands, pp 9–29Google Scholar
  44. Riedwyl N, Luterbacher J, Wanner H (2008) An ensemble of European summer and winter temperature reconstructions back to 1500. Geophys Res Lett 35(20): doi:10.1029/2008GL035395
  45. Riedwyl N, Kütel M, Luterbacher J, Wanner H (2009) Comparison of climate field reconstruction techniques: application to Europe. Clim Dyn 32(2–3):381–395. doi:10.1007/s00382-008-0395-5
  46. Schenk F, Zorita E (2012) Reconstruction of high resolution atmospheric fields for Northern Europe using analog-upscaling. Clim Past 8(5):1681–1703. doi:10.5194/cp-8-1681-2012
  47. Smerdon JE (2012) Climate models as a test bed for climate reconstruction methods: pseudoproxy experiments. Wiley Interdiscip Rev Clim Change 3(1):63–77. doi:10.1002/wcc.149 CrossRefGoogle Scholar
  48. Smerdon JE, Kaplan A, Chang D, Evans MN (2010) A pseudoproxy evaluation of the CCA and RegEM methods for reconstructing climate fields of the last millennium. J Clim 24(4):4856–4880. doi:10.1175/2010JCLI4110.1 CrossRefGoogle Scholar
  49. von Storch H, Zwiers FW (2002) Statistical analysis in climate research. Cambridge University Press, CambridgeGoogle Scholar
  50. von Storch H, Zorita E, Gonzalez-Rouco JF (2008) Assessment of three temperature reconstruction methods in the virtual reality of a climate simulation. Int J Earth Sci 98(1):67–82. doi:10.1007/s00531-008-0349-5 CrossRefGoogle Scholar
  51. Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res Atmos 106(D7):7183–7192. doi:10.1029/2000JD900719 CrossRefGoogle Scholar
  52. Tingley MP, Huybers P (2010a) A bayesian algorithm for reconstructing climate anomalies in space and time. Part I: development and applications to paleoclimate reconstruction problems. J Clim 23(10):2759–2781. doi:10.1175/2009JCLI3015.1 CrossRefGoogle Scholar
  53. Tingley MP, Huybers P (2010b) A bayesian algorithm for reconstructing climate anomalies in space and time. part II: comparison with the regularized Expectation-Maximization algorithm. J Clim 23(10):2782–2800. doi:10.1175/2009JCLI3016.1 CrossRefGoogle Scholar
  54. Tingley MP, Huybers P (2013) Recent temperature extremes at high northern latitudes unprecedented in the past 600 years. Nature 496(7444):201–205. doi:10.1038/nature11969 CrossRefGoogle Scholar
  55. Tingley MP, Craigmile PF, Haran M, Li B, Mannshardt E, Rajaratnam B (2012) Piecing together the past: statistical insights into paleoclimatic reconstructions. Quat Sci Rev 35:1–22. doi:10.1016/j.quascirev.2012.01.012 CrossRefGoogle Scholar
  56. Trouet V, Esper J, Graham N, Baker A, Scourse JD, Frank D (2009) Persistent positive North Atlantic oscillation mode dominated the medieval climate anomaly. Science 324(5923):78–80. doi:10.1126/science.1166349
  57. Van Den Dool HM (1994) Searching for analogues, how long must we wait? Tellus A 46:314–324. doi:10.1034/j.1600-0870.1994.t01-2-00006.x CrossRefGoogle Scholar
  58. Werner JP, Luterbacher J, Smerdon JE (2013) A pseudoproxy evaluation of bayesian hierarchical modeling and canonical correlation analysis for climate field reconstructions over Europe. J Clim 26(3):851–867. doi:10.1175/JCLI-D-12-00016.1
  59. Xoplaki E, González-Rouco JF, Luterbacher J, Wanner H (2004) Wet season Mediterranean precipitation variability: influence of large-scale dynamics and trends. Clim Dyn 23(1):63–78. doi:10.1007/s00382-004-0422-0 CrossRefGoogle Scholar
  60. Xoplaki E, Luterbacher J, Paeth H, Dietrich D, Steiner N, Grosjean M, Wanner H (2005) European spring and autumn temperature variability and change of extremes over the last half millennium. Geophys Res Lett 32(15):L15,713. doi:10.1029/2005GL023424 CrossRefGoogle Scholar
  61. Zorita E, von Storch H (1999) The analog method as a simple statistical downscaling technique: comparison with more complicated methods. J Clim 12:2474–2489CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Juan José Gómez-Navarro
    • 1
    • 2
  • Johannes Werner
    • 3
    • 4
  • Sebastian Wagner
    • 2
  • Jürg Luterbacher
    • 4
  • Eduardo Zorita
    • 2
  1. 1.Physics Institute and Oescher Centre for Climate Change ResearchUniversity of BernBernSwitzerland
  2. 2.Institute for Coastal ResearchHelmholtz-Zentrum GeesthachtGeesthachtGermany
  3. 3.Bjerknes Centre for Climate Research and Department of Earth ScienceUniversity of BergenBergenNorway
  4. 4.Department of Geography, Climatology, Climate Dynamics and Climate ChangeJustus Liebig University of GiessenGiessenGermany

Personalised recommendations