Skip to main content

Advertisement

Log in

Robustness of the modes of Indo-Pacific sea level variability

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

This study evaluates the influence of various climate modes on sea level. The altimetry record has excellent spatial coverage but the limited length becomes an issue when evaluating low frequency variability in the presence of a trend. We use altimetry along with two ocean models to study how the relationship between sea surface height (SSH) in the Indian and Pacific Oceans and four climate modes [the Pacific Decadal Oscillation (PDO), the El Niño–Southern Oscillation, the Indian Ocean Dipole and the Southern Annular Mode] depends on the length of the time series. For low frequency variability such as the PDO, a time series on the order of 50 years in length is required to separate variability from the trend. Using shorter time series results in aliasing of the SSH trend and low frequency variability, which has implications for ascertaining the role of the PDO in the SSH trends. We find that the regression of SSH on to the PDO during the altimetry period, which is thought to have been responsible for a large fraction of the recent western Pacific SSH trend, is not representative of the SSH–PDO relationship in the longer-term record.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Abram NJ, Gagan MK, Cole JE, Hantoro WS, Mudelsee M (2008) Recent intensification of tropical climate variability in the Indian Ocean. Nat Geosci 1(12):849–853

    Article  Google Scholar 

  • Allan R, Ansell T (2006) A new globally complete monthly historical gridded mean sea level pressure dataset (HadSLP2): 1850–2004. J Clim 19(22):5816–5842

    Article  Google Scholar 

  • Cai W, Meyers G, Shi G (2005) Transmission of ENSO signal to the Indian Ocean. Geophys Res Lett 32(5):L05616

    Article  Google Scholar 

  • Calafat FM, Chambers DP, Tsimplis MN (2014) On the ability of global sea level reconstructions to determine trends and variability. J Geophys Res Oceans 119(3):1572–1592

    Article  Google Scholar 

  • Carton JA, Giese BS (2008) A reanalysis of ocean climate using Simple Ocean Data assimilation (SODA). Mon Weather Rev 136(8):2999–3017

    Article  Google Scholar 

  • Cazenave A, Dieng H-B, Meyssignac B, von Schuckmann K, Decharme B, Berthier E (2014) The rate of sea-level rise. Nat Clim Change 4(5):358–361

    Article  Google Scholar 

  • Chepurin GA, Carton JA, Leuliette E (2014) Sea level in ocean reanalyses and tide gauges. J Geophys Res Oceans 119(1):147–155

    Article  Google Scholar 

  • Church JA, Clark PU, Cazenave A, Gregory JM, Jevrejeva S, Levermann A, Merrifield MA, Milne GA, Nerem RS, Nunn PD, Payne AJ, Pfeffer WT, Stammer D, Unnikrishnan AS (2013) Sea level change. In: Stocker T, Qin D, Plattner G-K, Tignor M, Allen S, Boschung J, Nauels A, Xia Y, Bex V, Midgley P (eds) Climate change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Church JA, White NJ (2011) Sea-level rise from the late 19th to the early 21st century. Surv Geophys 32(4–5):585–602

    Article  Google Scholar 

  • Czeschel R, Stramma L, Schwarzkopf FU, Giese BS, Funk A, Karstensen J (2011) Middepth circulation of the eastern tropical South Pacific and its link to the oxygen minimum zone. J Geophys Res Oceans 116(C1):C01015

    Article  Google Scholar 

  • Delworth TL, Rosati A, Anderson W, Adcroft AJ, Balaji V, Benson R, Dixon K, Griffies SM, Lee H-C, Pacanowski RC, Vecchi GA, Wittenberg AT, Zeng F, Zhang R (2012) Simulated climate and climate change in the GFDL CM2.5 high-resolution coupled climate model. J Clim 25(8):2755–2781

    Article  Google Scholar 

  • Ding Q, Steig EJ, Battisti DS, Wallace JM (2012) Influence of the tropics on the Southern Annular Mode. J Clim 25(18):6330–6348

    Article  Google Scholar 

  • Enfield DB, Allen JS (1980) On the structure and dynamics of monthly mean sea level anomalies along the Pacific coast of North and South America. J Phys Oceanogr 10(4):557–578

    Article  Google Scholar 

  • England MH, McGregor S, Spence P, Meehl GA, Timmermann A, Cai W, Gupta AS, McPhaden MJ, Purich A, Santoso A (2014) Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nat Clim Change 4(3):222–227

    Article  Google Scholar 

  • Feng M, Li Y, Meyers G (2004) Multidecadal variations of Fremantle sea level: footprint of climate variability in the tropical Pacific. Geophys Res Lett 31(16):L16302

    Article  Google Scholar 

  • Folland CK, Renwick JA, Salinger MJ, Mullan AB (2002) Relative influences of the interdecadal Pacific oscillation and ENSO on the South Pacific convergence zone. Geophys Res Lett 29(13):1643

    Article  Google Scholar 

  • Frankcombe LM, Spence P, Hogg AM, England MH, Griffies SM (2013) Sea level changes forced by Southern Ocean winds. Geophys Res Lett 40(21):5710–5715

    Article  Google Scholar 

  • Griffies SM (2012) Elements of the Modular Ocean Model (MOM): 2012 release (GFDL Ocean Group technical report No. 7. GFDL Ocean Group technical report No. 7. NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, USA

  • Griffies SM, Biastoch A, Böning C et al (2009) Coordinated ocean–ice reference experiments (COREs). Ocean Model 26(1–2):1–46

    Article  Google Scholar 

  • Griffies SM, Yin J, Durack PJ, Goddard P et al (2014) An assessment of global and regional sea level for years 1993–2007 in a suite of interannual CORE-II simulations. Ocean Model 78:35–89

    Article  Google Scholar 

  • Han W, Meehl G, Hu A, Alexander M, Yamagata T, Yuan D, Ishii M, Pegion P, Zheng J, Hamlington B, Quan X-W, Leben R (2013) Intensification of decadal and multi-decadal sea level variability in the western tropical Pacific during recent decades. Clim Dynam 1–23

  • Kleeman R, McCreary J, Klinger BA (1999) A mechanism for generating ENSO decadal variability. Geophys Res Lett 26(12):1743–1746

    Article  Google Scholar 

  • Kug J-S, Kang I-S (2006) Interactive feedback between ENSO and the Indian Ocean. J Clim 19(9):1784–1801

    Article  Google Scholar 

  • Lee T, McPhaden MJ (2008) Decadal phase change in large-scale sea level and winds in the Indo-Pacific region at the end of the 20th century. Geophys Res Lett 35(1):L01605

    Article  Google Scholar 

  • Mann ME, Steinman BA, Miller SK (2014) On forced temperature changes, internal variability and the AMO. Geophys Res Lett 41:3211–3219

    Article  Google Scholar 

  • Mantua NJ, Hare SR, Zhang Y, Wallace JM, Francis RC (1997) A Pacific interdecadal climate oscillation with impacts on salmon production. Bull Am Meteorol Soc 78(6):1069–1079

    Article  Google Scholar 

  • Marshall GJ (2003) Trends in the southern annular mode from observations and reanalyses. J Clim 16(24):4134–4143

    Article  Google Scholar 

  • McGregor S, Gupta AS, England MH (2012a) Constraining wind stress products with sea surface height observations and implications for Pacific Ocean sea level trend attribution. J Clim 25(23):8164–8176

    Article  Google Scholar 

  • McGregor S, Timmermann A, Schneider N, Stuecker MF, England MH (2012b) The effect of the south Pacific convergence zone on the termination of El Niño events and the meridional asymmetry of ENSO. J Clim 25:5566–5586

    Article  Google Scholar 

  • McGregor S, Timmermann A, England MH, Timm OE, Wittenberg AT (2013) Inferred changes in El Niño-southern oscillation variance over the past six centuries. Clim Past 9(5):2269–2284

    Article  Google Scholar 

  • McGregor S, Timmermann A, Stuecker MF, England MH, Merrifield M, Jin F-F, Chikamoto Y (2014) Recent walker circulation strengthening and Pacific cooling amplified by Atlantic warming. Nat Clim Change 4(10):888–892

    Article  Google Scholar 

  • McGregor S, Timmermann A, Timm O (2010) A unified proxy for ENSO and PDO variability since 1650. Clim Past 6(1):1–17

    Article  Google Scholar 

  • Meinen CS, McPhaden MJ (2000) Observations of warm water volume changes in the equatorial Pacific and their relationship to El Niño and La Niña. J Clim 13:3551–3559

    Article  Google Scholar 

  • Merrifield MA, Thompson PR, Lander M (2012) Multidecadal sea level anomalies and trends in the western tropical Pacific. Geophys Res Lett 39(13):L13602

    Article  Google Scholar 

  • Meyssignac B, Becker M, Llovel W, Cazenave A (2012b) An assessment of two-dimensional past sea level reconstructions over 1950–2009 based on tide-gauge data and different input sea level grids. Surv Geophys 33(5):945–972

    Article  Google Scholar 

  • Meyssignac B, Salas y Melia D, Becker M, Llovel W, Cazenave A (2012a) Tropical Pacific spatial trend patterns in observed sea level: internal variability and/or anthropogenic signature? Clim Past 8(2):787–802

    Article  Google Scholar 

  • Newman M, Compo GP, Alexander MA (2003) ENSO-forced variability of the Pacific decadal oscillation. J Clim 16(23):3853–3857

    Article  Google Scholar 

  • Nidheesh AG, Lengaigne M, Vialard J, Unnikrishnan AS, Dayan H (2013) Decadal and long-term sea level variability in the tropical Indo-Pacific Ocean. Clim Dynam 41:381–402

    Article  Google Scholar 

  • Peltier WR (2004) Global glacial isostasy and the surface of the ice-age earth: the ICE-5G (VM2) model and GRACE. Annu Rev Earth Planet Sci 32:111

    Article  Google Scholar 

  • Perrette M, Landerer F, Riva R, Frieler K, Meinshausen M (2013) A scaling approach to project regional sea level rise and its uncertainties. Earth Syst Dynam 4(1):11–29

    Article  Google Scholar 

  • Power S, Tseitkin F, Mehta V, Lavery B, Torok S, Holbrook N (1999) Decadal climate variability in Australia during the twentieth century. Int J Climatol 19(2):169–184

    Article  Google Scholar 

  • Qiu B, Chen S (2006) Decadal variability in the large-scale sea surface height field of the South Pacific Ocean: observations and causes. J Phys Oceanogr 36(9):1751–1762

    Article  Google Scholar 

  • Qiu B, Chen S (2012) Multidecadal sea level and gyre circulation variability in the northwestern tropical Pacific Ocean. J Phys Oceanogr 42(1):193–206

    Article  Google Scholar 

  • Ray RD, Douglas BC (2011) Experiments in reconstructing twentieth-century sea levels. Prog Oceanogr 91(4):496–515

    Article  Google Scholar 

  • Roemmich D, Gilson J, Davis R, Sutton P, Wijffels S, Riser S (2007) Decadal spinup of the South Pacific subtropical gyre. J Phys Oceanogr 37(2):162–173

    Article  Google Scholar 

  • Saji NH, Goswami BN, Vinayachandran PN, Yamagata T (1999) A dipole mode in the tropical Indian Ocean. Nature 401(6751):360–363

    Google Scholar 

  • Santoso A, England MH, Cai W (2012) Impact of Indo-Pacific feedback interactions on ENSO dynamics diagnosed using ensemble climate simulations. J Clim 25(21):7743–7763

    Article  Google Scholar 

  • Santoso A, McGregor S, Jin F-F, Cai W, England MH, An S-I, McPhaden MJ, Guilyardi E (2013) Late-twentieth-century emergence of the El Niño propagation asymmetry and future projections. Nature 504:126–130

    Article  Google Scholar 

  • Slangen ABA, Katsman CA, Wal RSW, Vermeersen LLA, Riva REM (2012) Towards regional projections of twenty-first century sea-level change based on IPCC SRES scenarios. Clim Dynam 38(5–6):1191–1209

    Article  Google Scholar 

  • Spence P, Griffies SM, England MH, Hogg AM, Saenko OA, Jourdain NC (2014) Rapid subsurface warming and circulation changes of Antarctic coastal waters by poleward shifting winds. Geophys Res Lett 41:4601–4610

  • Stuecker MF, Timmermann A, Jin F-F, McGregor S, Ren H-L (2013) A combination mode of the annual cycle and the El Niño/Southern Oscillation. Nat Geosci 6(7):540–544

    Article  Google Scholar 

  • Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res Atmos 106(D7):7183–7192

    Article  Google Scholar 

  • Timmermann A, McGregor S, Jin F-F (2010) Wind effects on past and future regional sea level trends in the southern Indo-Pacific. J Clim 23(16):4429–4437

    Article  Google Scholar 

  • Widlansky MJ, Timmermann A, McGregor S, Stuecker MF, Cai W (2014) An interhemispheric tropical sea level seesaw due to El Niño Taimasa. J Clim 27(3):1070–1081

  • Wittenberg AT (2004) Extended wind stress analyses for ENSO. J Clim 17:2536–2540

    Article  Google Scholar 

  • Wittenberg AT, Rosati A, Delworth TL, Vecchi GA, Zeng F (2014) ENSO modulation: Is it decadally predictable? J Clim 27(7):2667–2681

    Article  Google Scholar 

  • Wolter K, Timlin MS (2011) El Niño/Southern Oscillation behaviour since 1871 as diagnosed in an extended multivariate ENSO index (MEI.ext). Int J Climatol 31(7):1074–1087

    Article  Google Scholar 

  • Zhang X, Church JA (2012) Sea level trends, interannual and decadal variability in the Pacific Ocean. Geophys Res Lett 39(21):L21701

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leela M. Frankcombe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frankcombe, L.M., McGregor, S. & England, M.H. Robustness of the modes of Indo-Pacific sea level variability. Clim Dyn 45, 1281–1298 (2015). https://doi.org/10.1007/s00382-014-2377-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-014-2377-0

Keywords

Navigation