Skip to main content

Effect of snow cover on pan-Arctic permafrost thermal regimes

Abstract

This study quantitatively evaluated how insulation by snow depth (SND) affected the soil thermal regime and permafrost degradation in the pan-Arctic area, and more generally defined the characteristics of soil temperature (TSOIL) and SND from 1901 to 2009. This was achieved through experiments performed with the land surface model CHANGE to assess sensitivity to winter precipitation as well as air temperature. Simulated TSOIL, active layer thickness (ALT), SND, and snow density were generally comparable with in situ or satellite observations at large scales and over long periods. Northernmost regions had snow that remained relatively stable and in a thicker state during the past four decades, generating greater increases in TSOIL. Changes in snow cover have led to changes in the thermal state of the underlying soil, which is strongly dependent on both the magnitude and the timing of changes in snowfall. Simulations of the period 2001–2009 revealed significant differences in the extent of near-surface permafrost, reflecting differences in the model’s treatment of meteorology and the soil bottom boundary. Permafrost loss was greater when SND increased in autumn rather than in winter, due to insulation of the soil resulting from early cooling. Simulations revealed that TSOIL tended to increase over most of the pan-Arctic from 1901 to 2009, and that this increase was significant in northern regions, especially in northeastern Siberia where SND is responsible for 50 % or more of the changes in TSOIL at a depth of 3.6 m. In the same region, ALT also increased at a rate of approximately 2.3 cm per decade. The most sensitive response of ALT to changes in SND appeared in the southern boundary regions of permafrost, in contrast to permafrost temperatures within the 60°N–80°N region, which were more sensitive to changes in snow cover. Finally, our model suggests that snow cover contributes to the warming of permafrost in northern regions and could play a more important role under conditions of future Arctic warming.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

References

  • Adam JC, Lettenmaier DP (2003) Adjustment of global gridded precipitation for systematic bias. J Geophys Res 108:D9. doi:10.1029/2002JD002499

    Article  Google Scholar 

  • Alexeev VA, Nicolsky DJ, Romanovsky VE, Lawrence DM (2007) An evaluation of deep soil configurations in the CLM3 for improved representation of permafrost. Geophys Res Lett 34:L09502. doi:10.1029/2007GL029536

    Article  Google Scholar 

  • Bekryaev RV, Polyakov IV, Alexeev VA (2010) Role of polar amplification in long-term surface air temperature variations and modern Arctic warming. J Clim 23:3888–3906. doi:10.1175/2010JCLI3297.1

    Article  Google Scholar 

  • Benson CS, Sturm M (1993) Structure and wind transport of seasonal snow on the Arctic slope of Alaska. Ann Glaciol 18:261–267

    Google Scholar 

  • Boike J, Kattenstroth B, Abramova K (2013) Baseline characteristics of climate, permafrost and land cover from a new permafrost observatory in the Lena River Delta, Siberia (1998–2011). Biogeosciences 10:2105–2128. doi:10.5194/bg-10-2105-2013

    Article  Google Scholar 

  • Brown RD (2000) Northern Hemisphere snow cover variability and change, 1915–1997. J Clim 13:2339–2355

    Article  Google Scholar 

  • Bulygina ON, Razuvaev V, Korshunova N (2009) Change in snow cover northern Eurasia in the last decades. Environ Res Lett 4:045026. doi:10.1088/17489326/14/4/045026

    Article  Google Scholar 

  • Bulygina ON, Groisman PY, Razuvaev VN, Radionov VF (2010) Snow cover basal ice layer changes over Northern Eurasia since 1966. Environ Res Lett 5:015004. doi:10.1088/1748-9326/5/1/015004

    Article  Google Scholar 

  • Burke EJ, Kankers R, Jones CD, Wiltshire AJ (2013) A retrospective analysis of pan Arctic permafrost using the JULES land surface model. Clim Dyn. doi:10.1007/s00382-012-1648-x

    Google Scholar 

  • Burn CR, Kokelj SV (2009) The environment and permafrost of the Mackenzie Delta area. Permafr Periglac Process 20(2):83–105

    Article  Google Scholar 

  • Callaghan T, Johansson M, Brown R, Groisman P, Labba N, Radionov V (2011) Changing snow cover and its impacts, in AMAP, 2011, Snow, Water, Ice and Permafrost in the Arctic (SWIPA): Climate Change and the Cryosphere, Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway, pp 538

  • Cohen J, Furtado J, Barlow M, Alexeev V, Cherry J (2012) Arctic warming, increasing snow cover and widespread boreal winter cooling. Environ Res Lett 7:014007. doi:10.1088/1748-9326/1/1/014007

    Article  Google Scholar 

  • Dankers R, Burke EJ, Price J (2011) Simulation of permafrost and seasonal thaw depth in the JULES land surface scheme. Cryosphere 5:773–790. doi:10.5194/tc-5-773-2011

    Article  Google Scholar 

  • Drozdov DS, Ukraintseva NG, Tharev AM, Chekrygina SM (2010) Permafrost temperature fields changes and Urengoi gas-field geosystems condition in the last 35-year (1974–2008). Earth Cryosphere 14(1):22–31 (in Russian)

    Google Scholar 

  • Drozdov DS, Malkova GV, Ukraintseva NG, Korostelev YV (2012) Permafrost monitoring of southern Tundra landscapes in the Russian European North and West Siberia. TICOP, vol 2, pp 65–69

  • Eastman R, Warren SG (2010) Interannual variations of Arctic cloud types in relation to sea ice. J Clim 23:4216–4232

    Article  Google Scholar 

  • Fedorov AN, Gavriliev PP, Konstanitinov PY, Hiyama T, Iijima Y, Iwahana G (2014) Estimating the water balance of a thermokarst lake in the middle of the Lena River basin, eastern Siberia. Ecohydrology 7:188–196. doi:10.1002/eco.1378

    Article  Google Scholar 

  • Frauenfeld OW, Zhang T, Barry RG, Gilichinsky D (2004) Interdecadal changes in seasonal freeze and thaw depths in Russia. J Geophys Res 109:D05101. doi:10.1029/2003JD004245

    Article  Google Scholar 

  • Ghatak D, Gong G, Frei A (2010) North American temperature, snowfall, and snow-depth response to winter climate modes. J Clim 23:2320–2332. doi:10.1175/2009JCLI3050.1

    Article  Google Scholar 

  • Gouttevin I, Menegoz M, Domine F, Krinner G, Koven C, Ciais P, Tarnocai C, Boike J (2012) How the insulating properties of snow affect soil carbon distribution in the continental pan-Arctic area. J Geophys Res 117:G02020. doi:10.1029/2011JG001916

    Article  Google Scholar 

  • Hinzman LD et al (2005) Evidence and implications of recent climate change in Northern Alaska and other Arctic regions. Clim Change 72:251–298. doi:10.1007/s10584-005-5352-2

    Article  Google Scholar 

  • IPCC (2014) Climate change 2013: the physical science basis. Fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

  • Johansson G, Pohjola VA, Jonasson C, Callaghan TV (2011) Multi-decadal changes in snow characteristics in sub-Arctic Sweden. Ambio 40:566–574

    Article  Google Scholar 

  • Jones PD, New M, Parker PE, Martin S, Rigor IG (1999) Surface air temperature and its changes over the past 150 years. Rev Geophys 37:173–199

    Article  Google Scholar 

  • Konstantinov PV (2009) Manual on monitoring site establishment for permafrost temperature observation. Melnikov Permafrost Institute Press, Yakutsk, pp 68 (in Russian)

  • Koven CD, Ringeval B, Friedlingstein P, Ciais P, Cadule P, Khvorostyanov D, Krinner G, Tarnocai C (2011) Permafrost carbon-climate feedbacks accelerate global warming. PNAS 108:14769–14774. doi:10.1073/pnas.1103910108

    Article  Google Scholar 

  • Koven CD, Riley WJ, Stern A (2013) Analysis of permafrost thermal dynamics and response to climate change in the CMIP5 earth system models. J Clim 26:1877–1900. doi:10.1175/JCLI-D-12-00228.1

    Article  Google Scholar 

  • Lachenbruch AH, Marshall BV (1986) Changing climate: geothermal evidence from permafrost in the Alaskan Arctic. Science 234:689–696

    Article  Google Scholar 

  • Landerer FW, Dickey JO, Güntner A (2010) Terrestrial water budget of the Eurasian pan-Arctic from GRACE satellite measurements during 2003–2009. J Geophys Res 115:D23115. doi:10.1029/2010JD014584

    Article  Google Scholar 

  • Lawrence DM, Slater AG (2008) Incorporating organic soil into a global climate model. Clim Dyn 30:145–160. doi:10.1007/s00382-007-0278-1

    Article  Google Scholar 

  • Lawrence DM, Slater AG (2010) The contribution of snow condition trends to future ground climate. Clim Dyn 34, doi:10.1007/s00382-009-0537-4

  • Lawrence DM, Slatter AG, Swenson SC (2012) Simulation of present-day and future permafrost and seasonally frozen ground conditions in CCSM4. J Clim 25:2207–2225. doi:10.1175/JCLI-D-11-00334.1

    Article  Google Scholar 

  • Legendre P, Legendre LFJ (1998) Numerical ecology. Elsevier, Amsterdam, p 853

    Google Scholar 

  • Liston GE, Hiemstra CA (2011) The changing cryosphere: pan-Arctic snow trends (1979–2009). J Clim 24:5691–5712. doi:10.1175/JCLI-D-11-00081.1

    Article  Google Scholar 

  • Malkova GV (2008) The last twenty-five years of changes in permafrost temperature of the European Russian Arctic. In: Kane DL, Hinkel KM (eds) Proceedings of the ninth international conference on permafrost. Fairbanks. Institute of Northern Engineering, University of Alaska Fairbanks, June 29–July 3, Fairbanks, Alaska, vol 2, pp 1119–1124

  • Meehl GA, Stocker TF, Collins W, Friedlingstein P, Gaye A, Gregory J, Kitoh A, Knutti R, Murphy J, Noda A, Raper S, Watterson I, Weaver A, Zhao ZC (2007) Global climate projections. In: Solomon S et al (eds) Climate change 2007: the physical science basis. Cambridge University Press, London, pp 747–845

    Google Scholar 

  • Moskalenko NG (2009) Ground temperature changes and vegetation under climate changing and anthropogenic influence in Nadym region of West Siberia. Earth Cryosphere 13(4):18–23 (in Russian)

    Google Scholar 

  • Murzin YA, Rusakov VG (1996) Ground temperature in the Yana basin, Cryolithozone and underground water in Siberia. Cryolithozone morphology-Yakutsk, MPI Press, vol 1, pp 45–56 (in Russian)

  • Nelson FE (2004) Circumpolar active layer monitoring (CALM) Workshop. Permafr Periglac Process 15(2):99–188

    Article  Google Scholar 

  • Nixon FM, Taylor AE (1998) Regional active layer monitoring across the sporadic, discontinuous and continuous permafrost zones, Mackenzie Valley, Northwestern Canada. In: Lewkowicz AG, Allard M (eds) Proceedings of the 7th international conference on permafrost, June 23–27, 1998, Yellowknife, Canada, Nordicana, vol 57, pp 815–820

  • Oberman NG (2007) Global warming and cryolithozone changes in Pechora-Urals regions. Razvedka I ohrana nedr 4:63–68 (in Rissian)

    Google Scholar 

  • Oberman NG (2008) Contemporary permafrost degradation of the European north of Russia. In: Kane DL, Hinkel KM (eds) Proceedings of the ninth international conference on permafrost. Fairbanks. Institute of Northern Engineering, University of Alaska Fairbanks, June 29–July 3, Fairbanks, Alaska, vol 2, pp 1305–1310

  • Oelke C, Zhang T, Serreze M (2004) Modeling evidence for recent warming of the Arctic soil thermal regime. Geophys Res Lett 31:L07208. doi:10.1029/2003GL019300

    Article  Google Scholar 

  • Orsolini YJ, Senan R, Benestad RE, Melsom A (2011) Autumn atmospheric response to the 2007 low Arctic sea ice extent in coupled ocean–atmosphere hindcasts. Clim Dyn 114:D19108

    Google Scholar 

  • Osterkamp TE (2007) Characteristics of the recent warming of permafrost in Alaska. J Geophys Res 112:F02S02. doi:10.1029/2006JF000578

  • Osterkamp TE (2008) Thermal state of permafrost in Alaska during the fourth quarter of the twentieth century. In: Kane DL, Hinkel KM (eds) Proceedings of the ninth international conference on permafrost. Fairbanks. Institute of Northern Engineering, University of Alaska Fairbanks, June 29–July 3, Fairbanks, Alaska, vol 2, pp 1333–1338

  • Park H, Iijima Y, Yabuki H, Ohta T, Walsh J, Kodama K, Ohata T (2011a) The application of a coupled hydrological and biogeochemical model (CHANGE) for modeling of energy, water, and CO2 exchange over a larch forest in eastern Siberia. J Geophys Res 116:D15102. doi:10.1029/2010JD015386

    Article  Google Scholar 

  • Park H, Yabuki Y, Ohata T (2011b) Analysis of satellite and model datasets for variability and trends in Arctic snow extent and depth, 1948–2006. Polar Sci. doi:10.1016/j.polar.2011.11.002

  • Park H, Walsh J, Fedorov AN, Sherstiukov AB, Iijima Y, Ohata T (2013a) The influence of climate and hydrological variables on opposite anomaly in active-layer thickness between Eurasian and North American watersheds. Cryosphere 7:631–645. doi:10.5194/tc-7-631-2013

    Article  Google Scholar 

  • Park H, Walsh JE, Kim Y, Nakai T, Ohata T (2013b) The role of declining Arctic sea ice in recent decreasing terrestrial Arctic snow depths. Polar Sci 7:174–187. doi:10.1016/j.polar.2012.10.002

    Article  Google Scholar 

  • Park H, Sherstiukov AB, Fedorov AN, Polyakov IV, Walsh JE (2014) An observation-based assessment of the influences of air temperature and snow depth on soil temperature in Russia. Environ Res Lett 9:064026. doi:10.1088/1748-9326/9/6/064026

    Article  Google Scholar 

  • Pavlov AV, Moskalenko NG (2001) Soils thermal regime in the. Earth Cryosphere 5(2):11–19 (in Russian)

    Google Scholar 

  • Peterson B et al (2002) Increasing river discharge to the Arctic Ocean. Science 298:2171–2173

    Article  Google Scholar 

  • Romanovsky VE, Sazonova TS, Balobaev VT, Shender NI, Sergueev DO (2007) Past and recent changes in air and permafrost temperatures in eastern Siberia. Glob Planet Change 56:399–413

    Article  Google Scholar 

  • Romanovsky VE, Drozdov DS, Oberman NG, Malkova GV, Kholodov AL, Marchenko SS, Moskalenko NG, Sergeev DO, Ukraintseva NG, Abramov AA, Gilichinsky DA, Vasiliev AA (2010) Thermal state of permafrost in Russia. Permafr Periglac Process 21:136–155. doi:10.1002/ppp.683

    Article  Google Scholar 

  • Schindler DW, Donahue WF (2006) An impending water crisis in Canada’s western prairie provinces. PNAS 103:7210–7216. doi:10.1073/pnas.0601568103

    Article  Google Scholar 

  • Schuur EA, Vogel JG, Crummer KG, Lee H, Sickman JO, Osterkamp TE (2009) The effect of permafrost thaw on old carbon release and net carbon exchange from tundra. Nature 459:556–559. doi:10.1038/nature08031

    Article  Google Scholar 

  • Sergueev DO, Ukhova JA, Stanilovskaya JV, Romanovsky VE (2007) Temperature regime of the permafrost and the active layer in northern Transbaykalia mountains (recommencement of Fixedwsite observations). Earth Cryosphere 11(2):19–26 (in Russian)

    Google Scholar 

  • Shiklomanov NI, Streletskiy DA, Nelson FE, Hollister RD, Romanovsky VE, Tweedie CE, Bockheim JG, Brown J (2010) Decadal variations of active-layer thickness in moisture-controlled landscapes, Barrow, Alaska. J Geophys Res 115:G00104. doi:10.1029/2009JG001248

    Article  Google Scholar 

  • Shmakin AB (2010) Climatic characteristics of snow cover over North Eurasia and their change during the last decades. Ice Snow 1:43–57

    Google Scholar 

  • Shur Y, Hinkel KM, Nelson FE (2005) The transient layer: implications for geocryology and climate-change science. Permafr Periglac Process 16:5–17

    Article  Google Scholar 

  • Skryabin PN, Varlamov SP (2012) The impact of development and fire on the thermal state of permafrost, Central Yakutia. TICOP 2:411–414

    Google Scholar 

  • Skryabin PN, Varlamov SP, Skachkov YB (2008) Evaluation of recent changes in the ground thermal state, central Yakutia. In: Kane DL, Hinkel KM (eds) Proceedings of the ninth international conference on permafrost. Fairbanks. Institute of Northern Engineering, University of Alaska Fairbanks, June 29–July 3, Fairbanks, Alaska, vol 2, pp 1653–1657

  • Smith SL, Wolfe SA, Riseborough DW, Nixon FM (2009) Active-layer characteristics and summer climatic indices, Mackenzie Valley, Northwest Territories, Canada. Permafr Periglac Process 20:201–220

    Article  Google Scholar 

  • Smith SL, Romanovsky VE, Lewkowics AG, Burn CR, Allard M, Clow GD, Yoshikawa K, Throop J (2010) Thermal state of permafrost in North America: a contribution to the International Polar Year. Permafr Periglac Process 21:117–135. doi:10.1002/ppp.690

    Article  Google Scholar 

  • Stieglitz M, Dery SJ, Romanovsky VE, Osterkamp TE (2003) The role of snow cover in the warming of Arctic permafrost. Geophys Res Lett 30(13):1721. doi:10.1029/2003GL017337

    Article  Google Scholar 

  • Strauss J, Schirrmeister L, Grosse G, Wetterich S, Ulrich M, Herzschuh U, Hubberten H-W (2013) The deep permafrost carbon pool of the Yedoma region in Siberia and Alaska. Geophys Res Lett 40:1–6. doi:10.1002/2013GL058088

    Article  Google Scholar 

  • Stroeve JC, Serreze MC, Barrett A, Kindig DN (2011) Attribution of recent changes in autumn cyclone associated precipitation in the Arctic. Tellus A 63:1–11

    Article  Google Scholar 

  • Sturm M, Johnson J (1992) Thermal conductivity measurements of depth hoar. J Geophys Res 97(B2):2129–2139. doi:10.1029/91JB02685

    Article  Google Scholar 

  • Sturm M, Holmgren J, Liston GE (1995) A seasonal snow cover classification system for local to global applications. J Clim 8:1261–1283. doi:10.1175/1520-0442(1995)008<1261:ASSCCS>2.0.CO;2

    Article  Google Scholar 

  • Takala M, Pulliainen J, Metsämäki S, Koskinen J (2009) Detection of snowmelt using spaceborne microwave radiometer data in Eurasia from 1979 to 2007. IEEE Trans Geosci Remote Sensing 47(9):2996–3007

    Article  Google Scholar 

  • Tarnocai C, Canadell JG, Schuur EAG, Kuhry P, Mazhitova G, Zimov S (2009) Soil organic carbon pools in the northern circumpolar permafrost region. Global Biogeochem Cycles 23:GB2013. doi:10.1029/2008GB003327

  • Thornton P, Rosenbloom N (2005) Ecosystem model spin-up: estimating steady state conditions in a coupled terrestrial carbon and nitrogen cycle model. Ecol Model 189:25–48. doi:10.1016/j.ecolmodel.2005.04.008

    Article  Google Scholar 

  • Vasiliev AA, Drozdov DS, Moskalenko NG (2008) The dynamics of permafrost temperature in West Siberia on context of climate change. Earth Cryosphere 12(2):10–18 (in Russian)

    Google Scholar 

  • Weedon GP, Gomes S, Viterbo P, Shuttleworth WJ, Blyth E, Österle H, Adam JC, Bellouin N, Boucher O, Best M (2011) Creation of the WATCH forcing data and its use to assess global and regional reference crop evaporation over land during the twentieth century. J Hydrometeor 12:823–848. doi:10.1175/2011JHM1369.1

    Article  Google Scholar 

  • Zhang T (2005) Influence of the seasonal snow cover on the ground thermal regime: an overview. Rev Geophys 43:RG4002. doi:10.1029/2004RG000157

  • Zhang T, Osterkamp TE (1993) Changing climate and permafrost temperatures in the Alaskan Arctic. In Proceedings of the 6th international conference on permafrost, Beijing, China, July 5–9, 1993, vol. 1, pp. 783–788, S. China University of Pechnol. Press, Guangzhou, China

  • Zhang T, Stamnes K (1998) Impact of climatic factors on the active layer and permafrost at Barrow, Alaska. Permafr Periglac Process 9:229–246

    Article  Google Scholar 

  • Zhang T, Osterkamp TE, Stamnes K (1996) Influence of the depth hoar layer of the seasonal snow cover on the ground thermal regime. Water Resour Res 32:2075–2086

    Article  Google Scholar 

  • Zhang T, Osterkamp TE, Stamnes K (1997) Effects of climate on the active layer and permafrost on the north slope of Alaska, USA. Permafrost Periglac Proc 8(1):45–67

  • Zhang T, Barry RG, Gilichinsky D, Bykhovets SS, Sorokovikov VA, Ye J (2001) An amplified signal of climatic change in soil temperatures during the last century at Irkutsk, Russia. Clim Change 49:41–76

    Article  Google Scholar 

  • Zhang T, Barry RG, Knowles K, Ling F, Armstrong RL (2003) Distribution of seasonally and perennially frozen ground in the Northern Hemisphere. In: Permafrost, Phillips M, Springman SM, Arenson LU (eds) Swets & Zeitlinger, Lisse, pp 1289–1294

  • Zhang T, Frauenfeld OW, Serreze MC, Etringer A, Oelke C, McCreight J, Barry RG, Gilichinsk D, Yang D, Ye H, Ling F, Chudinova S (2005) Spatial and temporal variability in active layer thickness over the Russian Arctic drainage basin. J Geophys Res 110:D16101. doi:10.1029/2004JD005642

    Article  Google Scholar 

  • Zhang Y, Chen W, Riseborough DW (2006) Temporal and spatial changes of permafrost in Canada since the end of the Little Ice Age. J Geophys Res 111:D22103. doi:10.1029/2006JD007284

    Article  Google Scholar 

  • Zhang X, He J, Zhang J, Polyakov I, Gerdes R, Inoue J, Wu P (2013) Enhanced poleward moisture transport and amplified northern high-latitude wetting trend. Nat Clim Chang 3(1):47–51. doi:10.1038/nclimate1631

    Article  Google Scholar 

  • Zheleznyak MN (2011) Geocryological database for the siberian platform. In: Proceedings by the all-Russia conference on mountain relief and exogenenous processes. Publishing House of Institute for Geology SB RAS, Irkutsk, pp. 100–103

  • Zhong X, Zhang T, Wang K (2014) Snow density climatology across the former USSR. Cryosphere 8:785–799. doi:10.5194/tc-8-785-2014

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the JAMSTEC-IARC Collaboration Study (JICS) and Research Project No. C-07 of the Research Institute for Humanity and Nature (RIHN). We thank Dr. K. Oshima for useful discussions and comments, Dr. R. Brown (Environmental Canada) for the provision of snow data, and anonymous reviewers for critical comments and suggestions for our paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hotaek Park.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Park, H., Fedorov, A.N., Zheleznyak, M.N. et al. Effect of snow cover on pan-Arctic permafrost thermal regimes. Clim Dyn 44, 2873–2895 (2015). https://doi.org/10.1007/s00382-014-2356-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-014-2356-5

Keywords

  • Active layer thickness
  • Arctic climate
  • Land surface model
  • Permafrost extent
  • Snow depth
  • Soil temperature