Climate Dynamics

, Volume 45, Issue 3–4, pp 1009–1023 | Cite as

The implications for climate sensitivity of AR5 forcing and heat uptake estimates

Article

Abstract

Energy budget estimates of equilibrium climate sensitivity (ECS) and transient climate response (TCR) are derived using the comprehensive 1750–2011 time series and the uncertainty ranges for forcing components provided in the Intergovernmental Panel on Climate Change Fifth Assessment Working Group I Report, along with its estimates of heat accumulation in the climate system. The resulting estimates are less dependent on global climate models and allow more realistically for forcing uncertainties than similar estimates based on forcings diagnosed from simulations by such models. Base and final periods are selected that have well matched volcanic activity and influence from internal variability. Using 1859–1882 for the base period and 1995–2011 for the final period, thus avoiding major volcanic activity, median estimates are derived for ECS of 1.64 K and for TCR of 1.33 K. ECS 17–83 and 5–95 % uncertainty ranges are 1.25–2.45 and 1.05–4.05 K; the corresponding TCR ranges are 1.05–1.80 and 0.90–2.50 K. Results using alternative well-matched base and final periods provide similar best estimates but give wider uncertainty ranges, principally reflecting smaller changes in average forcing. Uncertainty in aerosol forcing is the dominant contribution to the ECS and TCR uncertainty ranges.

Keywords

Climate sensitivity Transient climate response Energy budget AR5 

References

  1. Aldrin M, Holden M, Guttorp P, Skeie RB, Myhre G, Berntsen TK (2012) Bayesian estimation of climate sensitivity based on a simple climate model fitted to observations of hemispheric temperatures and global ocean heat content. Environmetrics 23:253–271CrossRefGoogle Scholar
  2. Armour KC, Roe GH (2011) Climate commitment in an uncertain world. Geophys Res Lett 38:L01707CrossRefGoogle Scholar
  3. Armour KC, Bitz CM, Roe GR (2013) Time-varying climate sensitivity from regional feedbacks. J Clim 26:4518–4534CrossRefGoogle Scholar
  4. Bindoff NL, Stott PA, AchutaRao KM, Allen M, Gillett N, Gutzler D, Hansingo K, Hegerl G, Hu Y, Jain S, Mokhov I, Overland J, Perlwitz J, Sebbari R, Zhang X (2014) Detection and attribution of climate change: from global to regional. In: Climate change 2013: The Physical Science Basis Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  5. Bond TC et al (2013) Bounding the role of black carbon in the climate system: a scientific assessment. J Geophys Res Atmos 118:5380–5552. doi:10.1002/jgrd50171 CrossRefGoogle Scholar
  6. Boucher O, Randall D, Artaxo P, Bretherton C, Feingold G, Forster P, Kerminen V, Kondo Y, Liao H, Lohmann U, Rasch P, Satheesh SK, Sherwood S, Stevens B, Zhang X (2014) Clouds and aerosols. In: Climate change 2013: The Physical Science Basis Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  7. Carslaw KS, Lee LA, Reddington CL, Pringle KJ, Rap A, Forster PM, Mann GW, Spracklen DV, Woodhouse MT, Regayre LA, Pierce JR (2013) Large contribution of natural aerosols to uncertainty in indirect forcing. Nature 503:67–71CrossRefGoogle Scholar
  8. Church JA et al (2011) Revisiting the Earth’s sea-level and energy budgets from 1961 to 2008. Geophys Res Lett 38:L18601CrossRefGoogle Scholar
  9. DelSole T, Tippett MK, Shukla J (2011) A significant component of unforced multidecadal variability in the recent acceleration of global warming. J Clim 24:909–926CrossRefGoogle Scholar
  10. Domingues CM, Church JA, White NJ, Gleckler PJ, Wijffels SE, Barker PM, Dunn JR (2008) Improved estimates of upper-ocean warming and multi-decadal sea-level rise. Nature 453:1090–1093CrossRefGoogle Scholar
  11. Enfield DB, Mestas-Nunez AM, Trimble PJ (2001) The Atlantic multidecadal oscillation and its relationship to rainfall and river flows in the continental US. Geophys Res Lett 28:2077–2080CrossRefGoogle Scholar
  12. Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R, Fahey DW, Haywood J, Lean J, Lowe DC, Myhre G, Nganga J, Prinn R, Raga DC, Schulz M, Van Dorland R (2007) Changes in atmospheric constituents and in radiative forcing. In: Climate change 2007: The Physical Science Basis Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  13. Forster PM, Andrews T, Good P, Gregory JM, Jackson LS, Zelinka M (2013) Evaluating adjusted forcing and model spread for historical and future scenarios in the CMIP5 generation of climate models. J Geophys Res 118:1139–1150Google Scholar
  14. Fuglestvedt J, Berntsen T, Myhre G, Rypdal K, Skeie R (2008) Climate forcing from the transport sectors. PNAS 105(2):454–458CrossRefGoogle Scholar
  15. Gordon C, Cooper C, Senior CA, Banks H, Gregory JM, Johns TC, Mitchell JFB, Wood RA (2000) The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Clim Dyn 16:147–168CrossRefGoogle Scholar
  16. Gregory JM, Forster PM (2008) Transient climate response estimated from radiative forcing and observed temperature change. J Geophys Res 113:D23105Google Scholar
  17. Gregory JM, Stouffer RJ, Raper SCB, Stott PA, Rayner NA (2002) An observationally based estimate of the climate sensitivity. J Clim 15:3117–3121CrossRefGoogle Scholar
  18. Gregory JM et al (2013) Climate models without pre-industrial volcanic forcing underestimate historical ocean thermal expansion. Geophys Res Lett 40(8):1600–1604CrossRefGoogle Scholar
  19. Hansen J et al (2005) Efficacy of climate forcings. J Geophys Res 110:D18104. doi:10.1029/2005JD005776 CrossRefGoogle Scholar
  20. Hartmann DL, Klein Tank AMG, Rusticucci M, Alexander LV, Brönnimann S, Charabi Y, Dentener FJ, Dlugokencky EJ, Easterling DR, Kaplan A, Soden BJ, Thorne PW, Wild M, Zhai PM (2014) Observations: atmosphere and surface. In: Climate change 2013: The Physical Science Basis Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  21. Ishii M, Kimoto M (2009) Reevaluation of historical ocean heat content variations with time-varying XBT and MBT depth bias corrections. J Oceanogr 65:287–299CrossRefGoogle Scholar
  22. Levitus S et al (2012) World ocean heat content and thermosteric sea level change (0–2000 m) 1955–2010. Geophys Res Lett 39:L10603CrossRefGoogle Scholar
  23. Lewis N (2013) An objective Bayesian, improved approach for applying optimal fingerprint techniques to estimate climate sensitivity. J Clim 26:7414–7429CrossRefGoogle Scholar
  24. Loeb NG et al (2012) Observed changes in top-of-the-atmosphere radiation and upper-ocean heating consistent within uncertainty. Nat Geosci 5:110–113CrossRefGoogle Scholar
  25. Lyman JM, Johnson GC (2014) Estimating global ocean heat content changes in the upper 1800 m since 1950 and the influence of climatology choice. J. Clim 27:1945–1957CrossRefGoogle Scholar
  26. Lyman JM et al (2010) Robust warming of the global upper ocean. Nature 465:334–337CrossRefGoogle Scholar
  27. Masters T (2014) Observational estimate of climate sensitivity from changes in the rate of ocean heat uptake and comparison to CMIP5 models. Clim Dyn 42:2173–2181. doi:10.1007/s00382-013-1770-4 CrossRefGoogle Scholar
  28. Meinshausen M, Meinshausen N, Hare W, Raper SCB, Frieler K, Knutti R, Frame DJ, Allen MR (2009) Greenhouse gas emission targets for limiting global warming to 2°C. Nature 458:1158–1162CrossRefGoogle Scholar
  29. Meinshausen M, Smith SJ, Calvin K, Daniel JS, Kainuma MLT, Lamarque J-F, Matsumoto K, Montzka SA, Raper SCB, Riahi K, Thomson A, Velders GJM, van Vuuren DPP (2011) The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim Change 109(1–2):213–241Google Scholar
  30. Meraner K, Mauritsen T, Voigt A (2013) Robust increase in equilibrium climate sensitivity under global warming. Geophys Res Lett 40:1–5. doi:10.1002/2013GL058118 CrossRefGoogle Scholar
  31. Morice CP, Kennedy JJ, Rayner NA, Jones PD (2012) Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: the HadCRUT4 data set. J Geophys Res 117:D08101. doi:10.1029/2011JD017187 Google Scholar
  32. Myhre G, Shindell D, Bréon F, Collins W, Fuglestvedt J, Huang J, Koch D, Lamarque J, Lee D, Mendoza B, Nakajima T, Robock A, Stephens G, Takemura T, Zhang H (2014) Anthropogenic and natural radiative forcing. In: Climate change 2013: The Physical Science Basis Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  33. Otto A, Otto FEL, Boucher O, Church J, Hegerl G, Forster PM, Gillett NP, Gregory J, Johnson GC, Knutti R, Lewis N, Lohmann U, Marotzke J, Myhre G, Shindell D, Stevens B, Allen MR (2013) Energy budget constraints on climate response. Nat Geosci 6:415–416CrossRefGoogle Scholar
  34. Ring MJ, Lindner D, Cross EF, Schlesinger ME (2012) Causes of the global warming observed since the 19th century. Atmos Clim Sci 2:401–415Google Scholar
  35. Roe GH, Armour KC (2011) How sensitive is climate sensitivity? Geophys Res Lett 38:L14708CrossRefGoogle Scholar
  36. Rogelj J, Meinshausen M, Sedlácek J, Knutti R (2014) Implications of potentially lower climate sensitivity on climate projections and policy. Environ Res Lett 9. doi:10.1088/1748-9326/9/3/031003
  37. Rose BEJ, Armour KC, Battisti DS, Feldl N, Koll DDB (2014) The dependence of transient climate sensitivity and radiative feedbacks on the spatial pattern of ocean heat uptake. Geophys Res Lett 41:1071–1078CrossRefGoogle Scholar
  38. Schmittner A, Urban NM, Shakun JD, Mahowald NM, Clark PU, Bartlein PJ, Mix AC, Rosel-Mele A (2011) Climate sensitivity estimated from temperature reconstructions of the last glacial maximum. Science 334:1385–1388CrossRefGoogle Scholar
  39. Schwartz SE (2012) Determination of Earth’s transient and equilibrium climate sensitivities from observations over the twentieth century: strong dependence on assumed forcing. Surv Geophys 33(3–4):745–777CrossRefGoogle Scholar
  40. Skeie RB, Berntsen T, Aldrin M, Holden M, Myhre G (2014) A lower and more constrained estimate of climate sensitivity using updated observations and detailed radiative forcing time series. Earth Syst Dyn 5:139–175CrossRefGoogle Scholar
  41. Smith DM, Murphy JM (2007) An objective ocean temperature and salinity analysis using covariances from a global climate model. J Geophys Res 112(C02022). doi:10.1029/2005JC003172
  42. Smith SJ, van Aardenne J, Klimont Z, Andres RJ, Volke A, Delgado Arias S (2011) Anthropogenic sulfur dioxide emissions: 1850–2005. Atmos Chem Phys 11:1101–1116CrossRefGoogle Scholar
  43. Stevenson DS et al (2013) Tropospheric ozone changes, radiative forcing and attribution to emissions in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). Atmos Chem Phys 13:3063–3085CrossRefGoogle Scholar
  44. Tomassini L, Reichert P, Knutti R, Stocker TF, Borsuk ME (2007) Robust Bayesian uncertainty analysis of climate system properties using Markov chain Monte Carlo methods. J Clim 20:1239–1254CrossRefGoogle Scholar
  45. Tung K, Zhou J (2013) Using data to attribute episodes of warming and cooling instrumental records. PNAS 110:2058–2063CrossRefGoogle Scholar
  46. Willis JK, Lyman JM, Johnson GC, Gilson J (2009) In situ data biases and recent ocean heat content variability. J Atmos Ocean Technol 26:846–852CrossRefGoogle Scholar
  47. Wolter K, Timlin MS (1993) Monitoring ENSO in COADS with a seasonally adjusted principal component index. In: Proceedings of the 17th climate diagnostics workshop, Norman, OK, NOAA/NMC/CAC, NSSL, Oklahoma Clim Survey, CIMMS and the School of Meteor, Univ of Oklahoma, 52–57Google Scholar
  48. Wolter K, Timlin MS (2011) El Niño/Southern Oscillation behaviour since 1871 as diagnosed in an extended multivariate ENSO index (MEIext). Intl J Climatol 31:1074–1087CrossRefGoogle Scholar
  49. Zelinka, MD, Andrews T, Forster PM, Taylor KE (2014) Quantifying components of aerosol-cloud-radiation interactions in climate models. J Geophys Res Atmos 119. doi:10.1002/2014JD021710
  50. Zelinka MD, Hartmann DL (2012) Climate Feedbacks and Their Implications for Poleward Energy Flux changes in a warming climate. J Clim 25:608–624CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.BathUK
  2. 2.School of Earth and Atmospheric SciencesGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations