Skip to main content

Advertisement

Log in

Resolution dependence in simulating the African hydroclimate with the HadGEM3-RA regional climate model

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

This study documents the effect of horizontal resolution on the ability of the Met Office third-generation Global Atmosphere Regional Climate Model (HadGEM3-RA), a regional atmospheric configuration of the HadGEM3 model, to simulate rainfall variability over Africa. It is based on six 20-year long RCM simulations driven by ERA-Interim reanalysis and performed at 12, 25, 50, 70, 90, and 150 km over the CORDEX-Africa domain. To gain further insight into model errors, we also compared the HadGEM3-RA’s performance to that of the parent General Circulation Model using three different spatial resolutions (70, 100, and 150 km), and to HadRM3P—the current Met Office regional climate model. It is found that the 50 km resolution RCM reproduces reasonably the spatial and temporal features of rainfall variability across regions. These include the seasonal progression of the tropical rainbelt, its extent and location, the annual cycle and interannual variability. Although model biases vary across seasons and locations, a prominent feature is the over-prediction of rainfall totals over Central Africa, and underestimation of rainfall in coastal areas of the Guinea Gulf during boreal spring and autumn. HadGEM3-RA improves with increased horizontal resolution, but some model errors persist. Comparison with the parent global model simulations demonstrates generally a realistic and consistent behaviour over large scales—suggesting that the physical formulation is able to capture the key driving processes, but also confirms the benefit of increasing the model horizontal resolution. Despite the model errors, HadGEM3-RA rainfall shows superiority over that from HadRM3P, ERA-Interim and MERRA datasets—indicating that the associated dynamical features of HadGEM3-RA can complement the physical understanding gained from reanalyses. This article also highlights the challenges for evaluating climate models in data sparse regions where satellite derived rainfall and gridded observational datasets often diverge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Abel S, Shipway BJ (2007) A comparison of cloud-resolving model simulations of trade wind cumulus with aircraft observations taken during RICO. Q J R Meteorol Soc 133:781–794

    Article  Google Scholar 

  • Adler RF et al (2003) The version 2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979–present). J Hydro-meteorol 4:1147–1167. doi:10.1175/15257541(2003)004<1147:TVGPCP>2.0.CO;2

    Google Scholar 

  • Giorgi F et al (2001) Regional climate information—evaluation and projections. In: Houghton JT et al (eds) Chapter 10 of climate change 2001: the scientific basis contribution of the working group I to the third assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 583–638

  • Alexandru A, de Elia R, Laprise R (2007) Internal variability in regional climate downscaling at the seasonal scale. Mon Weather Rev 135:3221–3238

    Article  Google Scholar 

  • Anyah RO, Semazzi FH (2007) Variability of East African rainfall based on multiyear Regcm3 simulations. Int J Climatol 27:357–371. doi:10.1002/joc.1401

    Article  Google Scholar 

  • Arakawa A, Lamb C (1977) Computational design of the basic dynamic processes of the UCLA general circulation model. Methods Comput Phys 17:173–265

    Google Scholar 

  • Arnell NW, Hudson DA, Jones RG (2003) Climate change scenarios from a regional climate model: estimating change in runoff in southern Africa. J Geophys Res 108:D16,4519. doi:10.1029/2002JD002782

    Google Scholar 

  • Balas N, Nicholson SE, Klotter D (2007) The relationship of rainfall variability in West Central Africa to sea-surface temperature fluctuations. Int J Climatol 27:1335–1349

    Article  Google Scholar 

  • Berkes F, Knippertz P, Parker DJ, Gus J, Quiniou-Ramus V (2012) Convective squalls over the eastern equatorial, Wea. Forecasting 27:770–781

    Article  Google Scholar 

  • Best MJ, Pryor M, Clark DB, Rooney GG, Essery RL, Menard CB, Edwards JM, Hendry MA, Porson A, Gedney N, Mercado LM, Sitch S, Blyth E, Boucher O, Cox PM, Grimmond CSB, Harding RJ (2011) The Joint UK Land Environment Simulator (JULES), model description—part 1: energy and water fluxes. Geosci Model Dev 4:677–699. doi:10.5194/gmd-4-677-2011

    Article  Google Scholar 

  • Bielli S, Douville H, Pohl B (2011) Understanding the West African monsoon variability and its remote effects: an illustration of the grid point nudging methodology. Clim Dyn 35:159–174. doi:10.1007/s00382-009-0667-8

    Article  Google Scholar 

  • Boulard D, Pohl B, Crétat J, Vigaud N, Pham-Xuan T, Douville H (2013) Downscaling large-scale climate variability using a regional climate model: the case of ENSO over Southern Africa. Clim Dyn 40:1141–1168

    Article  Google Scholar 

  • Brown AR, Bearer RJ, Edwards JM, Lock AP, Keogh SJ, Milton SF, Walters DN (2008) Upgrades to the boundary layer scheme in the Met Office Numerical Weather Prediction model. Bound-Lay Meteorol 128:117–132

    Article  Google Scholar 

  • Caminade C, Terray L (2010) Twentieth century Sahel rainfall variability as simulated by the ARPEGE AGCM, and future changes. Clim Dyn 35:75–94. doi:10.1007/s00382-009-0545-4

    Article  Google Scholar 

  • Caron L-P, Jones C, Winger K (2010) Impact of resolution and downscaling technique in simulating recent Atlantic tropical cyclone activity. Clim Dyn 37:869–890. doi:10.1007/s00382-010-0846-7

    Article  Google Scholar 

  • Chan SC, Kendon EJ, Fowler HJ, Blenkinshop S, Ferro CAT, Stephenson DB (2013) Does increasing the spatial resolution of a regional climate model improve the simulated daily precipitation? Clim Dyn 41:1475–1495. doi:10.1007/s00382-012-1568-9

    Article  Google Scholar 

  • Charney J, Phillips N (1953) Numerical integration of the quasi-geostrophic equations for barotropic and simple baroclinic flows. J Meteor 10:71–99

    Article  Google Scholar 

  • Cook KH, Vizy EK (2006) Coupled Model Simulations of the West African Monsoon System: twentieth- and twenty-first-century simulations. J Clim 19:3681–3703

    Article  Google Scholar 

  • Cullen MPJ (1993) The unified forecast/climate model. Meteorol Mag 122(1449):81–95

    Google Scholar 

  • Davies T (2013) Lateral boundary conditions for limited area models. Q J R Meteorol Soc 140:185–196. doi:10.1002/qj.2127

    Article  Google Scholar 

  • Davies T, Cullen MJP, Malcolm AJ, Mawson MH, Staniforth A, White AA, Wood N (2005) A new dynamical core for the Met Office’s global and regional modelling of the atmosphere. Q J R Meteorol Soc 131:1759–1782

    Article  Google Scholar 

  • De Sales F, Xue Y (2011) Assessing the dynamic-downscaling ability over South America using the intensity-scale verification techniques. Int J Climatol 31:1205–1221. doi:10.1002/joc-2139

    Article  Google Scholar 

  • Dee DP et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597

    Article  Google Scholar 

  • Dezfuli AK, Nicholson SE (2013) The relationship of rainfall variability in western equatorial Africa to the Tropical Oceans and Atmospheric Circulation. Part II: the boreal autumn. J Clim 26:66–84

    Article  Google Scholar 

  • Di Lucas A, Elia R, Laprise R (2012) Potential for added value in precipitation simulated by high-resolution nested regional climate models and observations. Clim Dyn 38:1229–1247. doi:10.1007/s00382-011-1068-3

    Article  Google Scholar 

  • Dirmeyer I, Vidale PL, Verhoef A, Macpherson B, Jones C, Best M (2009) New soil physical properties implemented in the Unified model at PS18,. Tech. Rep., 528, Forecasting R&D, met Office, Exeter, UK

  • Diro GT, Tompkins AM, Bi X (2012) Dynamical downscaling of ECMWF ensemble seasonal forecasts over East Africa with RegCM3. J Geophys Res 17:D16103. doi:10.1029/2011JD01699

    Article  Google Scholar 

  • Druyan L (2011) Review studies of 21st-century precipitation trends over West Africa. Int J Climatol 31:1415–1424. doi:10.1002/joc.2180

    Article  Google Scholar 

  • Druyan L, Feng J, Cook KH, Xue Y, Fulakeza M, Hagos S, Konare A, Moufouma-Okia W, Rowell DP, Vizy EK, Ibrah SS (2010) The WAMME regional model Intercomparison study. Clim Dyn 35:175–192. doi:10.1007/s00382-009-0676-7

    Article  Google Scholar 

  • Duffy PB, Govindasamy B, Iorio JP, Milovich J, Sperber KR, Taylor KE, Wehner MF, Thompson SL (2003) High resolution simulation of global climate, part I: present climate. Clim Dyn 21:371–390. doi:10.1007/s00382-003-0339-z

    Article  Google Scholar 

  • Essery RLH, Best M, Cox PM, Taylor CM (2003) Explicit representation of subgrid heterogeneity in a GCM Land Surface Scheme. J Hydrometeorl 4:530–543

    Article  Google Scholar 

  • Feser AM, Rockel B, von Storch H, Winterfieldt J, Zhan M (2011) Regional climate models add value to global model data: a review and selected examples. Bull Am Meteorol Soc 92:1181–1192

    Article  Google Scholar 

  • Flaounas E, Janicot S, Bastin S, Roca R (2012) The West African monsoon onset in 2006: sensitivity to surface albedo, orography and synoptic scale dry-air intrusions using WRF. Clim Dyn 38:685–708. doi:10.1007/s00382-011-1255-2

    Article  Google Scholar 

  • Foley AM (2010) Uncertainty in regional climate modelling: a review. Prog Phys Geogr 34:647–670

    Article  Google Scholar 

  • Fontaine B, Louvet S (2006) Sudan-Sahel rainfall onset: definition of an objective index, types of years, and experimental hindcasts. J Geophys Res 111:D20103. doi:10.1029/2005JD007019

  • Frisch J, Chappell C (1980) Numerical prediction of convectively driven mesoscale pressure system. Part I: convective parameterization. J Atmos Sci 37:1722–1733

    Article  Google Scholar 

  • Gallée H, Moufouma-Okia W, Brasseur O, Dupays I, Marbaix P, Messager C, Ramel R, Lebel T (2004) A high resolution simulation of a West African rainy season using a regional climate model. J Geophys Res 109:D05108. doi:10.1029/2003JD004020

    Google Scholar 

  • Giorgi F, Mearns LO (1999) Introduction to special section: regional climate modeling revisited. J Geophys Res 104(D6):63355–66352

    Google Scholar 

  • Giorgi F, Jones C, Asrar GR (2009) Addressing climate information needs at the regional level: the CORDEX framework. WMO Bull 58(3):175–183

    Google Scholar 

  • Gordon C, Cooper C, Senior CA, Banks H, Gregory JM, Johns TC, Mitchell JFB, Wood RA (2000) The simulation of SST, sea ice extent and ocean heat transports in a version of the Hadley Centre coupled model without flux-adjustments. Clim Dyn 16:147–168

    Article  Google Scholar 

  • Gregory D, Allen S (1991) The effect of convective downdraughts upon NWP and climate simulations. In: Nineth conference on numerical weather prediction, Denver, Co1orado, pp 122–123

  • Gregory D, Rowntree PR (1990) A mass flux convection scheme with representation of cloud ensemble characteristics and stability dependent closure. Mon Weather Rev 118:1483–1506

    Article  Google Scholar 

  • Hastenrath S, Polzin D, Mutai C (2010) Diagnosing the drought and floods in Equatorial East Africa during boreal autumn. J Clim 23:813–817

    Article  Google Scholar 

  • Hernandez-Diaz L, Laprise R, Sushama L, Martynov A, Winger K (2012) Climate simulation over CORDEX Africa domain using the fifth-generation Canadian Regional Climate Model (CRCM5). Clim Dyn 40(5–6):1415–1433. doi:10.1007/s00382-012-1387-z

    Google Scholar 

  • Hourdin F et al (2010) AMMA model Intercomparison project. Bull Am Meteorol Soc 91:95–104

    Article  Google Scholar 

  • Huffman GJ, Adler RF, Bolvin DT, Gu G, Nelkin EJ, Bowman KP, Hong Y, Stocker EF, Wolff DB (2007) The TRMM multi-satellite precipitation analysis: quasi-global, multi-year, combined-sensor precipitation estimates at fine scale. J Hydrometeor 8(1):38–55

    Article  Google Scholar 

  • Huffman GJ, Adler RF, Bolvin DT, Gu G (2009) Improving the global precipitation record: GPCP version 2.1. Geophys Res Lett 36:L17808. doi:10.1029/2009GL040000

    Article  Google Scholar 

  • Hurrell J, Meehl GA, Bader D, Delworth TL, Kirtman B, Wielicki B (2009) A unified modeling approach to climate system prediction. Bull Am Meteorol Soc 1819–1832. doi:10.1175/2009BAMS2752.1

  • Jackson B, Nicholson SE, Klotter D (2008) Mesoscale convective systems over western Equatorial Africa and their relationship to large-scale circulation. Mon Weather Rev 137:1272–1294. doi:10.1175/2008MWR2525.1

  • Jones R, Noguer M, Hassell D, Hudson D, Wilson S, Jenkins G, Murphy J (2004) Generating high resolution climate change scenarios using PRECIS, Met Office Hadley Centre, Exeter, United Kingdom, pp 40

  • Kanamitsu M, DeHaan L (2011) The Added Value Index: a new metric to quantify the added value of regional models. J Geophys Res. doi:10.1029/2011JD015597

  • Kothe S, Luthi D, Ahrens B (2013) Analysis of the West African Monsoon system in the regional climate model COSMO-CLM. Int J Climatol 34:481–493. doi:10.1002/joc.3702

    Article  Google Scholar 

  • Kim J, Waliser DE, Mattmann CA, Goodale CE, Hart AF, Zimdars PA, Crichton DJ, Jones C, Nikulin G, Hewitson B, Jack C, Lennared C, Favre A (2014) Evaluation of the CORDEX-Africa multi-RCM hindcasts: systematic errors. Clim Dyn 42:1189–1202. doi:10.1007/s00382-013-1751-7

  • Kumar SV, Peters-Lidard CD, Tian Y, Houser PR, Geiger J, Olden S, Lighty L, Eastman JL, Doty B, Dirmeyer P, Adams J, Mitchell K, Wood EF, Sheffield J (2006) Land information system—an interoperable framework for high resolution land. Environ Model Softw 21:1402–1415

    Article  Google Scholar 

  • Lafore J-P et al (2011) Progress in understanding of weather systems in West Africa. Atmos Sci Lett 12:7–12. doi:10.1002/asl.335

    Article  Google Scholar 

  • Laprise R, de Elia R, Caya D, Biner S, Lucas-Pischer P, Diaconescu E, Leduc M, Alexandru A, Separovic L, Canadian network for regional climate modelling and diagnostics (2008) Challenging some tenets of regional climate modelling. Meteorol Atmos Phys 100(1–4):3–22

    Article  Google Scholar 

  • Laprise R, Hernandez-Diaz L, Tete K, Sushama L, Separovic L, Martynov A, Winger K, Valin M (2013) Climate projections over CORDEX Africa domain using the fifth-generation Canadian Regional Climate Model (CRCM5). Clim Dyn 41:3219–3246

    Article  Google Scholar 

  • Liang X-Z, Kunkel KE, Meehl GE, Jones RG, Wand JXL (2008) Regional climate models downscaling analysis of general circulation models present climate biases propagation into future change projections. Geophys Res Lett 35(8). doi:10.1029/2007GL032849

  • McKee TB, Doesken NJ, Kleist J (1995), Drought monitoring with multiple time scales. Preprints, 9th conference on applied climatology, 15–20 January, Dallas, Texas, American Meteorological Society, pp 233–236

  • Mitchell TD, Jones PD (2005) An improved method of constructing a database of monthly climate observations and associated high-resolution grid. Int J Climatol 25:693–712. doi:10.1002/joc.1181

    Article  Google Scholar 

  • Moufouma-Okia W, Rowell DP (2009) Impact of soil moisture initialisation and lateral boundary conditions on regional climate model simulation of the West African Monsoon. Clim Dyn 35(1):213–229. doi:10.1007/s00382-009-0638.0

    Article  Google Scholar 

  • Murthi A, Kenneth P, Bowman L, Leung R (2011) Simulation of precipitation using NRCM and comparisons with satellite observations and CAM: annual cycle. Clim Dyn 36:1659–1679. doi:10.1007/s00382-010-0878-z

    Article  Google Scholar 

  • Negron-Juarez RI, Li W, Fu R, Fernandes K, de Oliveira CA (2009) Comparison of precipitation datasets over the Tropical South American and African continents. J Hydrometeorol 10:289–299. doi:10.1175/1520-0442(2000)013

    Article  Google Scholar 

  • Nicholson SE (2009) The intensity, location and structure of the tropical rainbelt over west Africa as factors in interannual variability. Int J Climatol 28:1775–1785

    Article  Google Scholar 

  • Nicholson SE, Dezfuli AK (2013) The relationship of rainfall variability in western equatorial Africa to the Tropical Oceans and Atmospheric Circulation. Part I: the boreal spring. J Clim 26:45–65

    Article  Google Scholar 

  • Nicholson SE, Some B, Kone B (2000) Analysis of recent rainfall conditions in west Africa, including the rainy season of the 1997 El Nino and the 1998 La Nina years. J Clim 13:2628–2640

    Article  Google Scholar 

  • Nikulin G et al (2012) Precipitation climatology in an ensemble of CORDEX-Africa regional climate simulations. J Clim 25:6057–6078. doi:10.1175/JCLI-D-11-00375-1

    Article  Google Scholar 

  • Nogherotto R, Coppola E, Giorgi F, Mariotti L (2013) Impact of Congo Basin deforestation on the African monsoon. Atmos Sci Lett 14:45–51. doi:10.1002/asl.416

    Article  Google Scholar 

  • Novella NS, Thiaw WM (2012) African rainfall climatology version 2 for famine early warning systems. J Appl Meteorol Climatol 52:588–606. doi:10.1175/JAMC-D-11-0238.1.416

    Article  Google Scholar 

  • Patricola CM, Cook KH (2010) Northern African climate at the end of the twenty-first century: an integrated application of regional and global climate models. Clim Dyn 35:193–212. doi:10.1007/s00382-009-0623-7

  • Peterson CT, Stott PA, Herring S (2012) Explaining extreme events of 2011 from a climate perspective. Bull Am Meteorol Soc 93:1041–1067

    Article  Google Scholar 

  • Pohl B, Cretat J, Camberlin P (2011) Testing WRF capability in simulating the atmospheric water cycle over Equatorial East Africa. Clim Dyn 37:1357–1379. doi:10.1007/s00382-011-1024-2

    Article  Google Scholar 

  • Pokam WM, Djotang LAT, Mkankam FK (2012) Atmospheric water vapour transport and recycling in Equatorial Central Africa through NCEP/NCAR reanalysis data. Clim Dyn. doi:10.1007/s00382-011-1242-7

  • Pope VD, Stratton RA (2002) The processes governing horizontal resolution sensitivity in climate models. Clim Dyn 19:211–239. doi:10.1007/s00382-001-0222-8

    Article  Google Scholar 

  • Ramel R, Gallée H, Messager C (2006) On the northward shift of West African monsoon. Clim Dyn 26(4):429–440. doi:10.1007/s00382-005-0093-5

    Article  Google Scholar 

  • Redelsperger J-L, Thorncroft CD, Diedhiou A, Lebel T, Parker DJ, Polcher J (2006) African monsoon multidisciplinary analysis: an international research project and field campaign. Bull Am Meteorol Soc 87:1739–1746

    Article  Google Scholar 

  • Reichle RH (2012) The MERRA-land data product. GMAO Office Note No. 3 (Version 1.2), 38 pp. http://gmao.gsfc.nasa.gov/pubs/office_notes

  • Reynolds RW, Smith TM, Liu C, Chelton DB, Casey KS, Schlax MG (2007) Daily high-resolution-blended analyses for sea surface temperature. J Clim 20:5473–5496

    Article  Google Scholar 

  • Rienecker MM, Suarez MJ, Gelaro R, Todling R, Bacmeister J, Liu E, Bosilovich MG, Schubert SD, Takacs L, Kim G-K, Bloom S, Chen J, Collins D, Conaty A, da Silva A et al (2011) MERRA: NASA’s modern-era retrospective analysis for research and applications. J Clim 24:3624–3648. doi:10.1175/JCLI-D-11-00015.1

    Article  Google Scholar 

  • Roads J, Chen S, Cocke S et al (2003) International Research Institute/Applied Research Centers (IRI/ARCs) regional model intercomparison over South America. J Geophys Res 108:D14. doi:10.1029/2002JD003201

    Google Scholar 

  • Rodell M, Houser PR, Jambor U, Gottschalck J, Mitchell K, Meng C-J, Arsenault K, Cosgrove B, Radakovich J, Bosilovich M, Entin JK, Walker JP, Lohmann D, Toll D (2004) The global land data assimilation system. Bull Am Meteorol Soc 85(3):381–394

    Article  Google Scholar 

  • Rodriguez JM, Johns TC, Thorpe RB, Wiltshire A (2011) Using moisture conservation to evaluate oceanic surface freshwater fluxes in climate models. Clim Dyn 37:205–219. doi:10.1007/s00382-010-0899-7

    Article  Google Scholar 

  • Rudolf B, Becker A, Schneider U, Meyer-Christoffer A, Ziese M (2010) The new “GPCC full data reanalysis version 5” providing high quality gridded monthly precipitation data for the global land-surface is public available since December 2010. GPCC Status rep., 7 pp

  • Rummukainen M (2010) State-of-the-art with regional climate models. WIREs Clim Change 1:82–96

    Article  Google Scholar 

  • Sato T, Miura H, Satoh M, Takayabu YN, Wang Y (2009) Diurnal cycle of precipitation in the tropics simulated in a global cloud-resolving model. J Clim 22(18):175–192, 4809–4826

  • Sultan B, Janicot S (2003) The West African monsoon dynamics. Part II: The “preonset” and “onset” of the summer monsoon. J Clim 16:3407–3427

  • Sylla MB, Gaye AT, Pal JS, Jenkins GS, Bi XQ (2009) High-resolution simulations of West African climate using regional climate model (RegCM3) with different lateral boundary conditions. Theor Appl Climatol 98:293–314. doi:10.1007/s00704-009-0110-4

    Article  Google Scholar 

  • Sylla MB, Gaye AT, Jenkins GS, Pal JS, Giorgi F (2010) Consistency of projected drought over the Sahel with changes in the monsoon circulation and extremes in regional climate model projections. J Geophys Res 115:D16108. doi:10.1029/2009JD012983

    Article  Google Scholar 

  • Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res 106:7183–7192

    Article  Google Scholar 

  • Taylor KE, Stouffer RJ, Meehl G (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93(4):485–498. doi:10.1175/BAMS-D-11-00094.1

    Article  Google Scholar 

  • Vellinga MA, Arribas A, Graham R (2013) Seasonal forecasts for regional onset of the West African monsoon. Clim Dyn 40:3047–3070. doi:10.1007/s00382-012-1520z

    Article  Google Scholar 

  • Walsh K, Lavender S, Scocimarro E, Murakami H (2013) Resolution dependence of tropical cyclone formation in CMIP3 and finer resolution models. Clim Dyn 40:585–599. doi:10.1007/s00382-012-1298-z

    Article  Google Scholar 

  • Walters DN, Best MJ, Bushell AC, Copsey D, Edwards JM, Falloon PD, Harris CM, Lock AP, Manners JC, Morcrette CJ, Roberts MJ, Stratton RA, Webster S, Wilkinson JM, Willett MR, Boutle IA, Earnshaw PD, Hill PG, MacLachlan C, Martin GM, Moufouma-Okia W, Palmer MD, Petch JC, Roney GG, Scaife AA, Williams KD (2011) The Met Office Unified Model Global Atmosphere 3.0/3.1 and JULES Global Land 3.0/3.1 configurations. Geosci Model Dev 4:1213–1271. doi:10.5194/gmdd-4-12-1213-2011

    Article  Google Scholar 

  • Wang Y, Leung LR, McGregor JL, Lee DK, Wang WC, Ding Y, Kimura F (2004) Regional climate modeling: progress, challenges, and prospects. J Meteorol Soc Jpn 82(6):1599–1628

  • Washington R, James R, Pearce H, Pokam W, Moufouma-Okia W (2013) Congo basin rainfall climatology: can we believe the climate models. Philos Trans R Soc B 368(1625). doi:10.1098/rstb.2012.0296

  • Wilson DR, Ballard SP (1999) A microphysically based precipitation scheme for the UK Meteorological Office Unified Model. Q J R Meteorol Soc 125:1607–1636

    Article  Google Scholar 

  • Wilson DR, Bushell AC, Kerr-Munslow AM, Price JD, Morcrette CJ, Bodas-Salcedo A (2008) PC2: a prognostic cloud fraction and condensation scheme. II: climate simulation. Q J R Meteorol Soc 134:2109–2125

    Article  Google Scholar 

  • Xue Y, De Sales F, Lau WKM, Boone A, Feng J, Dirmeyer P, Guo Z, Kim K-M, Kitoh A, Kumar V, Poccard-Leclercq I, Mahowald N, Moufouma-Okia W, Pegion P, Rowell DP, Schemm J, Schubert SD, Sealy A, Thiaw W, Vintzileos A, Williams SF, Wu M-LC (2010) Intercomparison and analyses of the climatology of the West African Monsoon in the West African Monsoon Modeling and Evaluation project (WAMME) first model Intercomparison experiment. Clim Dyn 35:3–27. doi:10.1007/s00382-010-0778-2

    Article  Google Scholar 

Download references

Acknowledgments

This research was carried out under the joint UKDFID/Met Office Hadley Centre Climate Science Research Partnership (CSRP) for Africa, which is funded by the UK Department for International Development (DFID) for the benefit of developing countries. The views expressed are not necessarily those of DFID. Comments and suggestions from the anonymous reviewers greatly helped improve the manuscript. GPCP data were provided by NOAA NCDC from their web site at http://lwf.ncdc.noaa.gov/oa/wmo/wdcamet-ncdc.hml. The GLDAS data used in this study were acquired as part of the mission of NASA’s Earth Science Division and archived and distributed by the Goddard Earth Sciences (GES) Data and Information Services Center (DISC). MERRA reanalysis data were provided by the Global Modeling and Assimilation Office (GMAO) and the GES and available from http://disc.sci.gsfc.nasa.gov/daac-bin/FTPSubset.pl. ECMWF ERA-Interim data used in this study have been obtained from the ECMWF data server.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Moufouma-Okia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moufouma-Okia, W., Jones, R. Resolution dependence in simulating the African hydroclimate with the HadGEM3-RA regional climate model. Clim Dyn 44, 609–632 (2015). https://doi.org/10.1007/s00382-014-2322-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-014-2322-2

Keywords

Navigation