Climate Dynamics

, Volume 45, Issue 3–4, pp 837–851 | Cite as

A model study of the effect of climate and sea-level change on the evolution of the Antarctic Ice Sheet from the Last Glacial Maximum to 2100

  • M. N. A. MarisEmail author
  • J. M. van Wessem
  • W. J. van de Berg
  • B. de Boer
  • J. Oerlemans


Due to a scarcity of observations and its long memory of uncertain past climate, the Antarctic Ice Sheet remains a largely unknown factor in the prediction of global sea level change. As the history of the ice sheet plays a key role in its future evolution, in this study we model the Antarctic Ice Sheet from the Last Glacial Maximum (21 kyr ago) until the year 2100 with the ice-dynamical model ANICE. We force the model with different temperature, surface mass balance and sea-level records to investigate the importance of these different aspects for the evolution of the ice sheet. Additionally, we compare the model output from 21 kyr ago until the present with observations to assess model performance in simulating the total grounded ice volume and the evolution of different regions of the Antarctic Ice Sheet. Although there are some clear limitations of the model, we conclude that sea-level change has driven the deglaciation of the ice sheet, whereas future temperature change and the history of the ice sheet are the primary cause of changes in ice volume in the future. We estimate the change in grounded ice volume between its maximum (around 15 kyr ago) and the present-day to be between 8.4 and 12.5 m sea-level equivalent and the contribution of the Antarctic Ice Sheet to the global mean sea level in 2100, with respect to 2000, to be −22 to 63 mm.


Ice sheet modelling Last Glacial Maximum Climate change Sea-level change Model validation 



The figures in this paper were produced with NCL (UCAR/NCAR/CISL/VETS 2013). We thank SURFsara ( for the support in using the Cartesius Compute Cluster. We also appreciate the suggestions and comments by two anonymous reviewers, which led us to improvements of the manuscript.


  1. Ackert R Jr, Putnam A, Mukhopadhyay S, Pollard D, DeConto R, Kurz M, Borns H Jr (2013) Controls on interior West Antarctic ice sheet elevations: inferences from geologic constraints and ice sheet modeling. Q Sci Rev 65:26–38. doi: 10.1016/j.quascirev.2012.12.017 CrossRefGoogle Scholar
  2. Annan J, Hargreaves J (2013) A new global reconstruction of temperature changes at the Last Glacial Maximum. Clim Past 9:367–376. doi: 10.5194/cp-9-367-2013 CrossRefGoogle Scholar
  3. Bentley M (2010) The Antarctic palaeo record and its role in improving predictions of future Antarctic ice sheet change. J Q Sci 25:5–18. doi: 10.1002/jqs.1287 CrossRefGoogle Scholar
  4. Bindschadler R, Nowicki S, Abe-Ouchi A, Aschwanden A, Choi H, Fastook J, Granzow G, Greve R, Gutowski G, Herzfeld U, Jackson C, Johnson J, Khroulev C, Levermann A, Lipscomb W, Martin M, Morlighem M, Parizek B, Pollard D, Price S, Ren D, Saito F, Sato T, Seddik H, Seroussi H, Takahashi K, Li Wang W (2013) Ice-sheet model sensitivities to environmental forcing and their use in projecting future sea level (the SeaRISE project). J Glaciol 59(214):195–224. doi: 10.3189/2013JoG12J125 CrossRefGoogle Scholar
  5. Bintanja R, van de Wal R (2008) North American ice-sheet dynamics and the onset of 100,000-year glacial cycles. Nature 454:869–872. doi: 10.1038/nature07158 CrossRefGoogle Scholar
  6. Braconnot P, Otto-Bliesner B, Harrison S, Joussaume S, Peterschmitt J, Abe-Ouchi A, Crucifix M, Driesschaert E, Fichefet T, Hewitt C, Kageyama M, Kitoh A, Laîné A, Loutre M, Marti O, Merkel U, Ramstein G, Valdes P, Weber S, Yu Y, Zhao Y (2007) Results of PMIP2 coupled simulations of the Mid-Holocene and Last Glacial Maximum—Part 1: experiments and large-scale features. Clim Past 3:261–277Google Scholar
  7. Briggs R, Tarasov L (2013) How to evaluate model-derived deglaciation chronologies: a case study using Antarctica. Q Sci Rev 63:109–127. doi: 10.1016/j.quascirev.2012.11.021 CrossRefGoogle Scholar
  8. Briggs R, Pollard D, Tarasov L (2013) A glacial systems model configured for large ensemble analysis of Antarctic deglaciation. Cryosphere 7:1949–1970. doi: 10.5194/tc-7-1949-2013 CrossRefGoogle Scholar
  9. Church J, Clark P, Cazenave A, Gregory J, Jevrejeva S, Levermann A, Merrifield M, Milne G, Nerem R, Nunn P, Payne A, Pfeffer W, Stammer D, Unnikrishnan A (2014) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report on the intergovernmental panel on climate change, chap Sea level change, vol 13, Cambridge University Press, Cambridge, United Kingdom, pp 1137–1216Google Scholar
  10. Clark P, Mix A (2002) Ice sheets and sea level of the Last Glacial Maximum. Q Sci Rev 21:1–7CrossRefGoogle Scholar
  11. Collins M, Knutti R, Arblaster J, Dufresne J, Fichefet T, Friedlingstein P, Gao X, Gutowski W, Johns T, Krinner G, Shongwe M, Tebaldi C, Weaver A, Wehner M (2014) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report on the intergovernmental panel on climate change, chap Long-term climate change: projections, commitments and irreversibility, vol 12. Cambridge University Press, Cambridge, United Kingdom, pp 1029–1136Google Scholar
  12. De Boer B, van de Wal R, Lourens L, Bintanja R, Reerink T (2012) A continuous simulation of global ice volume over the past 1 million years with 3-D ice-sheet models. Clim Dyn 41:1365–1384. doi: 10.1007/s00382-012-1562-2 CrossRefGoogle Scholar
  13. Dinniman M, Klinck J, Smith W Jr (2011) A model study of circumpolar deep water on the West Antarctic Peninsula and Ross Sea continental shelves. Deep Sea Res II 58:1508–1523. doi: 10.1016/j.dsr2.2010.11.013 CrossRefGoogle Scholar
  14. Frankcombe L, Spence P, Hogg AM, England M, Griffies S (2013) Sea level changes forced by Southern Ocean winds. Geophys Res Lett 40:5710–5715. doi: 10.1002/2013GL058104 CrossRefGoogle Scholar
  15. Fretwell P, Pritchard H, Vaughan D, Bamber J, Barrand N, Bell R, Bianchi C, Bingham R, Blankenship D, Casassa G, Catania G, Callens D, Conway H, Cook A, Corr H, Damaske D, Damm V, Ferraccioli F, Forsberg R, Fujita S, Gim Y, Gogineni P, Griggs J, Hindmarsh R, Holmlund P, Holt J, Jacobel R, Jenkins A, Jokat W, Jordan T, King E, Kohler J, Krabill W, Riger-Kusk M, Langley K, Leitchenkov G, Leuschen C, Luyendyk B, Matsuoka K, Mouginot J, Nitsche F, Nogi Y, Nost O, Popov S, Rignot E, Rippin D, Rivera A, Roberts J, Ross N, Siegert M, Smith A, Steinhage D, Studinger M, Sun B, Tinto B, Welch B, Wilson D, Young D, Xiangbin C, Zirizotti A (2013) Bedmap2: improved ice bed, surface and thickness datasets for Antarctica. Cryosphere 7:375–393. doi: 10.5194/tc-7-375-2013 CrossRefGoogle Scholar
  16. Golledge N, Levy R, McKay R, Fogwill C, White D, Graham A, Smith J, Hillenbrand C, Licht K, Denton G, Ackert R Jr, Maas S, Hall B (2013) Glaciology and geological signature of the Last Glacial Maximum Antarctic ice sheet. Q Sci Rev 78:225–247. doi: 10.1016/j.quascirev.2013.08.011 CrossRefGoogle Scholar
  17. Gomez N, Pollard D, Mitrovica J (2013) A 3-D coupled ice sheet–sea level model applied to Antarctica through the last 40 ky. Earth Planet Sci Lett 384:88–99. doi: 10.1016/j.epsl.2013.09.042 CrossRefGoogle Scholar
  18. Hall B (2009) Holocene glacial history of Antarctica and the sub-Antarctic islands. Q Sci Rev 28:2213–2230. doi: 10.1016/j.quascirev.2009.06.011 CrossRefGoogle Scholar
  19. Hellmer H, Kauker F, Timmermann R, Determann J, Rae J (2012) Twenty-first-century warming of a large Antarctic ice-shelf cavity by a redirected coastal current. Nature 485:225–228. doi: 10.1038/nature11064 CrossRefGoogle Scholar
  20. Holland D, Jenkins A (1999) Modeling thermodynamic ice-ocean interactions at the base of an ice shelf. J Phys Oceanogr 29:1787–1800CrossRefGoogle Scholar
  21. Huybrechts P, Gregory J, Janssens I, Wild M (2004) Modelling Antarctic and Greenland volume changes during the 20th and 21st centuries forced by GCM time slice integrations. Global Planet Change 42:83–105CrossRefGoogle Scholar
  22. Imbrie J, Hays J, Martinson D, McIntyre A, Mix A, Morley J, Pisias N, Prell W, Shackleton N (1984) Milankovitsch and climate, part 1, D. Reidel, Dordrecht, The Netherlands, chap The orbital theory of Pleistocene climate: support from a revised chronology of the marine \(\delta ^{18}\)O record, pp 269–305Google Scholar
  23. Ingólfsson Ó, Hjort C, Berkman P, Björck S, Colhoun E, Goodwin I, Hall B, Hirakawa K, Melles M, Möller P, Prentice M (1998) Antarctic glacial history since the Last Glacial Maximum: an overview of the record on land. Antarct Sci 10:326–344CrossRefGoogle Scholar
  24. Jenkins A, Doake C (1991) Ice-ocean interaction on Ronne Ice Shelf. Antarctica. J Geophys Res 96(C1):791–813CrossRefGoogle Scholar
  25. Jouzel J, Masson-Delmotte V, Cattani O, Dreyfus G, Falourd S, Hoffmann G, Minster B, Nouet J, Barnola J, Chappellaz J, Fischer H, Gallet J, Johnsen S, Leuenberger M, Loulergue L, Luethi D, Oerter H, Parrenin F, Raisbeck G, Raynaud D, Schilt A, Schwander J, Selmo E, Souchez R, Spahni R, Stauffer B, Steffensen J, Stenni B, Stocker T, Tison J, Werner M, Wolff E (2007) EPICA Dome C ice core 800 kyr deuterium data and temperature estimates. IGBP PAGES/World Data Center for Paleoclimatology data contribution series 2007–091, NOAA/NCDC Paleoclimatology Program, Boulder CO, USAGoogle Scholar
  26. Kawamura K, Uemura R, Hideaki M, Fujita S, Azuma K, Fujii Y, Watanabe O, Vimeux F (2007) Dome Fuji ice core preliminary temperature reconstruction, 0–340 kyr. ICBP PAGES/World Data Center for Paleoclimatology data contribution series 2007–074, NOAA, Boulder CO, USAGoogle Scholar
  27. Knauss J (1997) Introduction to physical oceanography, 2nd edn. Prentice Hall, Upper Saddle RiverGoogle Scholar
  28. Le Brocq A, Payne A, Vieli A (2010) An improved Antarctic dataset for high resolution numerical ice sheet models (ALBMAP v1). Earth Syst Sci Data 2:247–260. doi: 10.5194/essd-2-247-2010 CrossRefGoogle Scholar
  29. Lenaerts J, van den Broeke M, van de Berg W, van Meijgaard E, Kuipers Munneke P (2012) A new, high-resolution surface mass balance map of Antarctica (1979–2010) based on regional atmospheric climate modeling. Geophys Res Lett 39(L04501):1–5. doi: 10.1029/2011GL050713 Google Scholar
  30. Ligtenberg S, van de Berg W, van den Broeke M, Rae J, van Meijgaard E (2013) Future surface mass balance of the Antarctic ice sheet and its influence on sea level change, simulated by a regional atmospheric climate model. Clim Dyn 41:867–884. doi: 10.1007/s00382-013-1749-1 CrossRefGoogle Scholar
  31. Little C, Urban N, Oppenheimer M (2013) Probabilistic framework for assessing the ice sheet contribution to sea level change. Proc Nat Acad Sci 110(9):3264–3269. doi: 10.1073/pnas.1214457110 CrossRefGoogle Scholar
  32. Maris M, Ligtenberg S, Crucifix M, de Boer B, Oerlemans J (2014) Modelling the evolution of the Antarctic ice sheet since the last interglacial. Cryosphere Discuss 8:85–120. doi: 10.5194/tcd-8-85-2014 CrossRefGoogle Scholar
  33. Nicholls K, Østerhus S, Makinson K, Gammelsrød T (2009) Ice-ocean processes over the continental shelf of the southern Weddell Sea, Antarctica: a review. Rev Geophys 47(RG3003):1–23Google Scholar
  34. Orsi A, Whitworth III T (2004) Hydrographic atlas fo the world ocean circulation experiment (WOCE) volume 1: Southern Ocean. International WOCE Project Office, Southampton, UKGoogle Scholar
  35. Peltier W (2004) Global glacial isostasy and the surface of the ice-age Earth: the ICE-5G (VM2) model and GRACE. Annu Rev Earth Planet Sci 32:111–149. doi: 10.1146/ CrossRefGoogle Scholar
  36. Petit J, Jouzel J, Raynaud D, Barkov N, Barnola J, Basile I, Bender M, Chappellaz J, Davis J, Delaygue G, Delmotte M, Kotlyakov V, Legrand M, Lipenkov V, Lorius C, Pépin L, Ritz C, Saltzman E, Stievenard M (1999) Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399:429–436CrossRefGoogle Scholar
  37. Pollard D, DeConto R (2009) Modeling West Antarctic ice sheet growth and collapse through the past five million years. Nature 458:329–332. doi: 10.1038/nature07809 CrossRefGoogle Scholar
  38. Rignot E, Jacobs S, Mouginot J, Scheuchl B (2013) Ice-shelf melting around Antarctica. Science 341:266–270. doi: 10.1126/science.1235798 CrossRefGoogle Scholar
  39. Ritz C, Rommelaere V, Dumas C (2001) Modeling the evolution of Antarctic ice sheet over the last 420,000 years: implications for altitude changes in the Vostok region. J Geophys Res 106(D23):31,943–31,964Google Scholar
  40. UCAR/NCAR/CISL/VETS (2013) The NCAR command language (Version 6.1.2) [Software]. Boulder, CO. doi: 10.5065/D6WD3XH5
  41. Van de Berg W, van den Broeke M, Reijmer C, van Meijgaard E (2006) Reassessment of the Antarctic surface mass balance using calibrated output of a regional atmospheric climate model. J Geophys Res 111(D11104):1–15. doi: 10.1029/2005JD006495 Google Scholar
  42. Van Meijgaard E, van Ulft L, van de Berg W, Bosveld F, van den Hurk B, Lenderink G, Siebesma A (2008) The KNMI regional atmospheric climate model RACMO version 2.1. Royal Netherlands Meteorological Institute, De BiltGoogle Scholar
  43. Vaughan D, Comiso J, Allison I, Carrasco J, Kaser G, Kwok R, Mote P, Murray T, Paul F, Ren J, Rignot E, Solomina O, Steffen K, Zhang T (2014) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change, chap Observations: cryosphere, vol 4. Cambridge University Press, Cambridge, United Kingdom, pp 317–382Google Scholar
  44. Waelbroeck C, Paul A, Kucera M, Rosell-Melé A, Weinelt M, Schneider R, Mix A, Abelmann A, Armand L, Bard E, Barker S, Barrows T, Benway H, Cacho I, Chen M, Cortijo E, Crosta X, de Vernal A, Dokken T, Duprat J, Elderfield H, Eynaud F, Gersonde R, Hayes A, Henry M, Hillaire-Marcel C, Huang C, Jansen E, Juggins S, Kallel N, Kiefer T, Kienast M, Labeyrie L, Leclaire H, Londeix L, Mangin S, Matthiessen J, Marret F, Meland M, Morey A, Mulitza S, Pflaumann U, Pisias N, Radi T, Rochon A, Rohling E, Sbaffi L, Schäfer-Neth C, Solignac S, Spero H, Tachikawa K, Turon J (2009) Constraints on the magnitude and patterns of ocean cooling at the Last Glacial Maximum. Nat Geosci 2:127–132. doi: 10.1038/NGEO411 CrossRefGoogle Scholar
  45. WAIS Divide Project Members (2013) Onset of deglacial warming in West Antarctica driven by local orbital forcing. Nature 500:440–444. doi: 10.1038/nature12376 CrossRefGoogle Scholar
  46. Whitehouse P, Bentley M, Le Brocq A (2012) A deglacial model for Antarctica: geological constraints and glaciological modelling as a basis for a new model of Antarctic glacial isostatic adjustment. Q Sci Rev 32:1–24. doi: 10.1016/j.quascirev.2011.11.016 CrossRefGoogle Scholar
  47. Winkelmann R, Levermann A, Martin M, Frieler K (2012) Increased future ice discharge from Antarctica owing to higher snowfall. Nature 492:239–242. doi: 10.1038/nature11616 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • M. N. A. Maris
    • 1
    Email author
  • J. M. van Wessem
    • 1
  • W. J. van de Berg
    • 1
  • B. de Boer
    • 1
  • J. Oerlemans
    • 1
  1. 1.Institute for Marine and Atmospheric Research UtrechtUtrecht UniversityUtrechtThe Netherlands

Personalised recommendations