Climate Dynamics

, Volume 43, Issue 11, pp 3163–3178 | Cite as

On the Atlantic–Pacific Niños connection: a multidecadal modulated mode

  • Marta Martín-Rey
  • Belén Rodríguez-Fonseca
  • Irene Polo
  • Fred Kucharski


Atlantic and Pacific El Niño are the leading tropical oceanic variability phenomena at interannual timescales. Recent studies have demonstrated how the Atlantic Niño is able to influence on the dynamical processes triggering the development of the Pacific La Niña and vice versa. However, the stationarity of this interbasin connection is still controversial. Here we show for the first time that the Atlantic–Pacific Niños connection takes place at particular decades, coinciding with negative phases of the Atlantic Multidecadal Oscillation (AMO). During these decades, the Atlantic–Pacific connection appears as the leading coupled covariability mode between Tropical Atlantic and Pacific interannual variability. The mode is defined by a predictor field, the summer Atlantic Sea Surface Temperature (SST), and a set of predictand fields which represent a chain of atmospheric and oceanic mechanisms to generate the Pacific El Niño phenomenon: alteration of the Walker circulation, surface winds in western Pacific, oceanic Kelvin wave propagating eastward and impacting on the eastern thermocline and changes in the Pacific SST by internal Bjerknes feedback. We suggest that the multidecadal component of the Atlantic acts as a switch for El Niño prediction during certain decades, putting forward the AMO as the modulator, acting through changes in the equatorial Atlantic convection and the equatorial Pacific SST variability. These results could have a major relevance for the decadal prediction systems.


ENSO Atlantic Pacific Prediction Tropical variability Atlantic Multidecadal Oscillation Sea surface temperature 



This study was supported by the European project PREFACE (ref.603521) the Spanish MINNECO projects CGL2009-10295, CGL2011-13564-E and CGL2012-38923-C02-01 and for the Spanish Public Employment Service (SEPE). The authors want to thank the editor for his help during the whole process of submission and also the useful and constructive comments of the two anonymous referees, which have been considerably improved the manuscript.


  1. An SI, Jin FF (2001) Collective role of thermocline and zonal advective feedbacks in the ENSO mode. J Clim 14:3421–3432CrossRefGoogle Scholar
  2. Annamalai H, Xie SP, McCreary JP, Murtugudde R (2005) Impact of Indian Ocean sea surface temperature on developing El Niño. J Clim 18:302–319CrossRefGoogle Scholar
  3. Bjerknes J (1964) Atlantic air-sea interaction. Adv Geophys 10:10–82Google Scholar
  4. Bjerknes J (1969) Atmospheric teleconnections from the equatorial Pacific. Mon Wea Rev 97:163–172CrossRefGoogle Scholar
  5. Boschat G, Terray P, Masson S (2013) Extratropical forcing of ENSO. Geophys Res Lett 40(8):1605–1611. doi: 10.1002/grl.50229 CrossRefGoogle Scholar
  6. Boyer TP et al (2009) WorldOcean database 2009. In: Levitus S (ed) NOAA Atlas NESDIS, 66, US Govt Print Off, Washington, DC, p 216Google Scholar
  7. Bretherton CS, Smith C, Wallace JM (1992) An intercomparison of methods for finding coupled patterns in climate data. J Clim 5:541–560CrossRefGoogle Scholar
  8. Chang P (1994) A study of the seasonal cycle of sea surface temperature in the tropical Pacific Ocean using reduced gravity models. J Geophys Res 99:7725–7741CrossRefGoogle Scholar
  9. Cherry S (1997) Some comments on singular value decomposition analysis. J Clim 10:1759–1761CrossRefGoogle Scholar
  10. Compo GP, Whitaker JS, Sardeshmukh PD (2006) Feasibility of a 100-year reanalysis using only surface pressure data. Bull Am Meteorol Soc 87:175–190. doi: 10.1175/BAMS-87-2-175 CrossRefGoogle Scholar
  11. Compo GP, Whitaker JS, Sardeshmukh PD (2008) The 20th century reanalysis project, paper presented at 3rd WCRP international conference on reanalysis. University of Tokyo, Tokyo, 28 Jan to 1 FebGoogle Scholar
  12. Compo GP et al (2011) The twentieth century reanalysis project. Q J R Meteorol Soc 137:1–28CrossRefGoogle Scholar
  13. Davey MK et al (2002) STOIC: a study of coupled model climatology and variability in tropical ocean regions. Clim Dyn 18:403–420CrossRefGoogle Scholar
  14. Dayan H, Vialard J, Izumo T, Lengaigne M (2013) Does sea surface temperature outside the tropical Pacific contribute to enhanced ENSO predictability? Clim Dyn. doi: 10.1007/s00382-013-1946-y Google Scholar
  15. Delworth TL, Mann ME (2000) Observed and simulated multidecadal variability in the Northern Hemisphere. Clim Dyn 16(9):661–676CrossRefGoogle Scholar
  16. Deser C, Alexander MA, Xie SP, Phillips AS (2010) Sea surface temperature variability: patterns and mechanisms. Annu Rev Marine Sci 2:115–143CrossRefGoogle Scholar
  17. Ding H, Keenlyside NS, Latif M (2012) Impact of the Equatorial Atlantic on the El Niño Southern Oscillation. Clim Dyn 38(9–10):1965–1972. doi: 10.1007/s00382-011-1097-y CrossRefGoogle Scholar
  18. Dong B, Sutton RT (2007) Enhancement of ENSO variability by a weakened Atlantic thermohaline circulation in a coupled GCM. J Clim 20(19):4920–4939CrossRefGoogle Scholar
  19. Dong B, Sutton RT, Scaife AA (2006) Multidecadal modulation of El Nino-Southern Oscillation (ENSO) variance by Atlantic Ocean sea surface temperatures. Geophys Res Lett 33(8):L08705. doi: 10.1029/2006GL025766 CrossRefGoogle Scholar
  20. Fang Y, Chiang JC, Chang P (2008) Variation of mean sea surface temperature and modulation of El Niño-Southern Oscillation variance during the past 150 years. Geophys Res Lett 35(14):L14709. doi: 10.1029/2008GL033761 CrossRefGoogle Scholar
  21. Federov A, Philander SG (2000) Is El Niño changing? Science 288:1997–2002CrossRefGoogle Scholar
  22. Frauen C, Dommenget D (2012) Influences of the tropical Indian and Atlantic Oceans on the predictability of ENSO. Geophys Res Lett 39:L02706CrossRefGoogle Scholar
  23. García-Serrano J, Losada T, Rodríguez-Fonseca B, Polo I (2008) Tropical Atlantic variability modes (1979–2002). Part II: time-evolving atmospheric circulation related to SST-forced tropical convection. J Clim 21:6476–6497CrossRefGoogle Scholar
  24. Giese BS, Ray S (2011) El Niño variability in simple ocean data assimilation (SODA), 1871–2008. J Geophys R Oceans (1978–2012) 116:C2Google Scholar
  25. Gill A (1980) Some simple solutions for heat-induced tropical circulation. Q J R Meteor Soc 106:447–462CrossRefGoogle Scholar
  26. Haarsma RJ, Campos E, Hazeleger W, Severijns C (2008) Influence of the meridional overturning circulation on tropical Atlantic climate and variability. J Clim 21:1403–1416CrossRefGoogle Scholar
  27. Ham YG, Kug JS, Park JY, Jin FF (2013) Sea surface temperature in the north tropical Atlantic as a trigger for El Niño/Southern Oscillation events. Nat Geosci 6:112–116CrossRefGoogle Scholar
  28. Handoh IC, Matthews AJ, Bigg GR, Stevens DP (2006a) Interannual variability of the tropical Atlantic independent of and associated with ENSO: part I. The North Tropical Atlantic. Int J Clim 26(14):1937–1956CrossRefGoogle Scholar
  29. Handoh IC, Bigg GR, Matthews AJ, Stevens DP (2006b) Interannual variability of the Tropical Atlantic independent of and associated with ENSO: part II. The South Tropical Atlantic. Int J Clim 26(14):1957–1976CrossRefGoogle Scholar
  30. Hong S, Kang IS, Choi I, Ham YG (2013) Climate responses in the tropical Pacific associated with Atlantic warming in recent decades. Asia–Pacific J Atmos Sci 49(2):209–217CrossRefGoogle Scholar
  31. Huang B, Schopf PS, Pan Z (2002) The ENSO effect on the tropical Atlantic variability: a regionally coupled model study. Geophys Res Lett 29(21):35-1CrossRefGoogle Scholar
  32. Izumo T, Vialard J, Lengaigne M, Montegut CDB, Behera SK, Luo JJ, Cravatte S, Masson S, Yamagata T (2010) Influence of the state of the Indian Ocean dipole of the following year’s El Niño. Nature 3:168–172Google Scholar
  33. Joly M, Voldoire A (2010) Role of the Gulf of Guinea in the inter-annual variability of the West African monsoon: what do we learn from CMIP3 coupled simulations? Int J Clim 30(12):1843–1856Google Scholar
  34. Kaplan A, Kushnir Y, Cane MA, Blumenthal MB (1997) Reduced space optimal analysis for historical data sets: 136 years of Atlantic sea surface temperatures. J Geophys Res Oceans (1978–2012), 102(C13): 27835–27860Google Scholar
  35. Kayano MT, Andreoli RV, Ferreira de Souza RA (2011) Evolving anomalous SST patterns leading to ENSO extremes: relations between the tropical Pacific and Atlantic Oceans and the influence on the South American rainfall. Int J Clim 31(8):1119–1134CrossRefGoogle Scholar
  36. Keenlyside NS, Latif M (2007) Understanding equatorial Atlantic interannual variability. J Clim 20(1):131–142CrossRefGoogle Scholar
  37. Keenlyside NS, Ding H, Latif M (2013) Potential of equatorial Atlantic variability to enhance El Niño prediction. Geophys Res Lett 40(10):2278–2283CrossRefGoogle Scholar
  38. Knight JR, Folland CK, Scaife AA (2006) Climate impacts of the Atlantic multidecadal oscillation. Geophys Res Lett 33(17):L17706. doi: 10.1029/2006GL026242
  39. Kucharski F, Molteni F, Bracco A (2006) Decadal interactions between the western tropical Pacific and the North Atlantic Oscillation. Clim Dyn 26:79–91CrossRefGoogle Scholar
  40. Kucharski F, Bracco A, Yoo JH, Molteni F (2008) Atlantic forced component of the Indian monsoon interannual variability. Geophys Res Lett 35:L04706CrossRefGoogle Scholar
  41. Kucharski F, Kang IS, Farneti R, Feudale L (2011) Tropical Pacific response to 20th century Atlantic warming. Geophys Res Lett 38(3):L03702. doi: 10.1029/2010GL046248
  42. Kug JS, Kang IS (2006) Interactive feedback between ENSO and the Indian Ocean. J Clim 19(9):1784–1801CrossRefGoogle Scholar
  43. Losada T, Rodríguez-Fonseca B, Polo I, Janicot S, Gervois S, Chauvin F, Ruti P (2010) Tropical response to the Atlantic Equatorial mode: AGCM multimodel approach. Clim Dyn 5:45–52CrossRefGoogle Scholar
  44. Losada T, Rodriguez-Fonseca B, Mohino E, Bader J, Janicot S, Mechoso CR (2012) Tropical SST and Sahel rainfall: a non-stationary relationship. Geophys Res Lett 39:12CrossRefGoogle Scholar
  45. Luo JJ, Zhang R, Behera SK, Masumoto Y, Jin FF, Lukas R, Yamagata T (2010) Interaction between El Niño and extreme Indian Ocean Dipole. J Clim 23:726–742CrossRefGoogle Scholar
  46. Martín-Rey M, Polo I, Rodríguez-Fonseca B, Kucharski F (2012) Changes in the interannual variability of the tropical Pacific as a response to an equatorial Atlantic forcing. Sci Mar 76, S1. doi: 10.3989/scimar.03610.19A
  47. Matsuno T (1966) Quasi-geostrophic motions in the equatorial area. J Meteor Soc Japan 44:24–42Google Scholar
  48. Mohino E, Rodríguez-Fonseca B, Losada T, Gervois S, Janicot S, Bader J, Ruti P, Chauvin F (2011) Changes in the interannual SST-forced signals on West African rainfall. AGCM intercomparison. Clim Dyn 37(9–10):1707–1725CrossRefGoogle Scholar
  49. Molteni F (2003) Atmospheric simulations using a GCM with simplified physical parametrizations. I. Model climatology and variability in multi-decadal experiments. Clim Dyn 20:175–191Google Scholar
  50. Münnich M, Neelin JD (2005) Seasonal influence of ENSO on the Atlantic ITCZ and equatorial South America. Geophys Res Lett 32:L21709CrossRefGoogle Scholar
  51. Philander SG (1990) El Niño, La Niña, and the Southern Oscillation, Academic Press, San Diego. 46. ISBN 0125532350Google Scholar
  52. Polo I, De Fonseca BR, Sheinbaum J (2005) Northwest Africa upwelling and the Atlantic climate variability. Geophys Res Lett 32(23):L23702CrossRefGoogle Scholar
  53. Polo I, Rodríguez-Fonseca B, Losada T, García-Serrano J (2008) Tropical Atlantic variability modes (1979–2002). Part I: time-evolving SST modes related to West African rainfall. J Clim 21:6457–6475CrossRefGoogle Scholar
  54. Polo I, Dong BW, Sutton RT (2013) Changes in tropical Atlantic interannual variability from a substantial weakening of the meridional overturning circulation. Clim Dyn 41(9–10):2765–2784Google Scholar
  55. Polo I, Martín-Rey M, Rodríguez-Fonseca B, Kucharski F, Mechoso CR (2014) Processes in the Pacific La Niña onset triggered by the Atlantic Niño, Clim Dyn (under revision)Google Scholar
  56. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Globally complete analyses of sea surface temperature, sea ice and night marine air temperature, 1871–2000. J Geophys Res 108:4407CrossRefGoogle Scholar
  57. Richter I, Xie SP (2008) On the origin of equatorial Atlantic biases in coupled general circulation models. Clim Dyn 31(5):587–598CrossRefGoogle Scholar
  58. Richter I, Xie SP, Behera SK, Doi T, Masumoto Y (2012) Equatorial Atlantic variability and its relation to mean state biases in CMIP5. Clim Dyn 42(1–2):171–188Google Scholar
  59. Rodríguez-Fonseca B, Polo I, García-Serrano J, Losada T, Mohino E, Mechoso CR, Kucharski F (2009) Are Atlantic Niños enhancing Pacific ENSO events in recent decades? Geophys Res Lett 36:L20705CrossRefGoogle Scholar
  60. Rodríguez-Fonseca B et al (2011) Interannual and decadal SST-forced responses of the West African monsoon. Atmos Sci Lett 12(1):67–74CrossRefGoogle Scholar
  61. Saravanan R, Chang P (2000) Interaction between tropical Atlantic variability and El Niño-Southern oscillation. J Clim 13:2177–2194CrossRefGoogle Scholar
  62. Stephenson DB, Pavan V, Bojariu R (2000) Is the North Atlantic oscillation a random walk? Int J Clim 20:1–18CrossRefGoogle Scholar
  63. Suarez MJ, Schopf PS (1988) A delayed action oscillator for ENSO. J Atmos Sci 5(45):3283–3287CrossRefGoogle Scholar
  64. Sutton RT, Jewson SP, Rowell DP (2000) The elements of climate variability in the tropical Atlantic region. J Clim 13(18):3261–3284CrossRefGoogle Scholar
  65. Svendsen L, Gunnar N, Keenlyside N (2013) Weakening AMOC connects Equatorial Atlantic and Pacific variability. Clim Dyn. doi: 10.1007/s00382-013-1904-8 Google Scholar
  66. Terray P (2011) Southern Hemisphere extra-tropical forcing: a new paradigm for El Niño-Southern Oscillation. Clim Dyn 36(11–12):2171–2199CrossRefGoogle Scholar
  67. Terray P, Dominiak S (2005) Indian Ocean Sea Surface Temperature and El Niño–Southern Oscillation: A New Perspective. J Clim 18(9):1351–1368Google Scholar
  68. Timmermann A et al (2007) The influence of a weakening of the Atlantic meridional overturning circulation on ENSO. J Clim 20(19):4899–4919CrossRefGoogle Scholar
  69. Toniazzo T, Woolnough S (2013) Development of warm SST errors in the southern tropical Atlantic in CMIP5 decadal hindcasts. Clim Dyn 1–25. doi: 10.1007/s00382-013-1691-2
  70. Villamayor J, Mohino E (2012) Variabilidad de la baja frecuencia de la precipitación de Sahel y su relación con la variabilidad multidecadal de las temperaturas de la superficie del mar en las simulaciones de CMIP5. Master Thesis, Universidad Complutense de MadridGoogle Scholar
  71. Voldoire A, Claudon M, Caniaux G, Giordani H, Roehrig R (2014) Are atmospheric biases responsible for the tropical Atlantic SST biases in the CNRM-CM5 coupled model? Clim Dyn 1–22. doi: 10.1007/s00382-013-2036-x
  72. Wahl S, Latif M, Park W, Keenlyside N (2011) On the tropical Atlantic SST warm bias in the Kiel Climate Model. Clim Dyn 36(5–6):891–906CrossRefGoogle Scholar
  73. Wang C, Lee SK, Mechoso CR (2010) Interhemispheric Influence of the Atlantic Warm Pool on the Southeastern Pacific. J Clim 23(2):404–418CrossRefGoogle Scholar
  74. Whitaker JS, Compo GP, Wei X, Hamill TM (2004) Reanalysis without radiosondes using ensemble data assimilation. Mon Wea Rev 132:1190–1200CrossRefGoogle Scholar
  75. Woodruff SD et al (2011) ICOADS release 2.5: extensions and enhancements to the surface marine meteorological archive. Int J Clim 31(7):951–967CrossRefGoogle Scholar
  76. Wyrtki K (1975) El Niño-the dynamic response of the Equatorial Pacific Ocean to Atmospheric Forcing. J Phys Oceanogr 5:572–584CrossRefGoogle Scholar
  77. Zebiak SE (1993) Air-sea interaction in the equatorial Atlantic region. J Clim 6:1567–1586CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Marta Martín-Rey
    • 1
    • 2
  • Belén Rodríguez-Fonseca
    • 1
    • 2
  • Irene Polo
    • 3
  • Fred Kucharski
    • 4
    • 5
  1. 1.Instituto de Geociencias, IGEOCentro Mixto UCM-CSICMadridSpain
  2. 2.Departamento de Física de la Tierra, Astronomía y Astrofísica I (Geofísica y Meteorología), 4 planta, Facultad de C.C. FísicasUCMMadridSpain
  3. 3.NCAS-Climate, Department of MeteorologyUniversity of ReadingReadingUK
  4. 4.The Abdus Salam International Centre for Theoretical PhysicsICTPTriesteItaly
  5. 5.Department of Meteorology, Center of Excellence for Climate Change ResearchKing Abdulaziz UniversityJeddahSaudi Arabia

Personalised recommendations