Climate Dynamics

, Volume 44, Issue 3–4, pp 735–755 | Cite as

Processes driving intraseasonal displacements of the eastern edge of the warm pool: the contribution of westerly wind events

  • Kyla DrushkaEmail author
  • Hugo Bellenger
  • Eric Guilyardi
  • Matthieu Lengaigne
  • Jérôme Vialard
  • Gurvan Madec


We investigate the processes responsible for the intraseasonal displacements of the eastern edge of the western Pacific warm pool (WPEE), which appear to play a role in the onset and development of El Niño events. We use 25 years of output from an ocean general circulation model experiment that is able to accurately capture the observed displacements of the WPEE, sea level anomalies, and upper ocean zonal currents at intraseasonal time scales in the western and central Pacific Ocean. Our results confirm that WPEE displacements driven by westerly wind events (WWEs) are largely controlled by zonal advection. This paper has also two novel findings: first, the zonal current anomalies responsible for the WPEE advection are driven primarily by local wind stress anomalies and not by intraseasonal wind-forced Kelvin waves as has been shown in most previous studies. Second, we find that intraseasonal WPEE fluctuations that are not related to WWEs are generally caused by intraseasonal variations in net heat flux, in contrast to interannual WPEE displacements that are largely driven by zonal advection. This study hence raises an interesting question: can surface heat flux-induced zonal WPEE motions contribute to El Niño–Southern Oscillation evolution, as WWEs have been shown to be able to do?


Westerly wind events Western Pacific warm pool Air–sea interaction El Niño Intraseasonal variability 



This work was supported by Agence Nationale de la Recherche (ANR) project METRO grant number 2010-BLAN-616-01. We gratefully acknowledge Benoît Vannière and Christian Ethé for help with running the model, and Sébastien Masson for useful feedback. We additionally thank three anonymous reviewers for their suggestions. Computations were carried out at the CNRS supercomputing centre (IDRIS).

Supplementary material

382_2014_2297_MOESM1_ESM.pdf (1.3 mb)
Supplementary Figure S1 (pdf 1,284 KB)
382_2014_2297_MOESM2_ESM.pdf (883 kb)
Supplementary Figure S2 (pdf 884 KB)


  1. Ashok K, Behera SK, Rao SA, Weng H, Yamagata T (2007) El Niño Modoki and its possible teleconnection. J Geophys Res 112(C11)Google Scholar
  2. Baturin N, Niiler P (1997) Effects of instability waves in the mixed layer of the equatorial Pacific. J Geophys Res 102(C13):27771–27793CrossRefGoogle Scholar
  3. Bjerknes J (1969) Atmospheric teleconnections from the equatorial Pacific 1. Mon Weather Rev 97(3):163–172CrossRefGoogle Scholar
  4. Blanke B, Delecluse P (1993) Variability of the tropical Atlantic Ocean simulated by a general circulation model with two different mixed-layer physics. J Phys Oceanogr 23(7):1363–1388CrossRefGoogle Scholar
  5. Bosc C, Delcroix T, Maes C (2009) Barrier layer variability in the western Pacific warm pool from 2000 to 2007. J Geophys Res 114(C6):C06023Google Scholar
  6. Boulanger J, Menkes C (1999) Long equatorial wave reflection in the Pacific Ocean from TOPEX/POSEIDON data during the 1992–1998 period. Clim Dyn 15(3):205–225CrossRefGoogle Scholar
  7. Boulanger J, Durand E, Menkes C, Delecluse P, Imbard M, Lengaigne M, Madec G, Masson S (2001) Role of non-linear oceanic processes in the response to westerly wind events: new implications for the 1997 El Nifio onset. Geophys Res Lett 28(8):1603–1606CrossRefGoogle Scholar
  8. de Boyer Montégut C, Vialard J, Shenoi S, Shankar D, Durand F, Ethé C, Madec G (2007) Simulated aeasonal and interannual variability of the mixed layer heat budget in the northern Indian Ocean. J Clim 20(13):3249–3268CrossRefGoogle Scholar
  9. Brodeau L, Barnier B, Treguier A, Penduff T, Gulev S (2010) An ERA40-based atmospheric forcing for global ocean circulation models. Ocean Modelling 31(3–4):88–104CrossRefGoogle Scholar
  10. Cronin M, McPhaden M (1997) The upper ocean heat balance in the western equatorial Pacific warm pool during September–December 1992. J Geophys Res 102:8533–8553CrossRefGoogle Scholar
  11. Delcroix T, Dewitte B et al (2000) Equatorial waves and warm pool displacements during the 1992–1998 El Niño Southern Oscillation events: Observation and modeling. J Geophys Res 105(C11):26,045–26CrossRefGoogle Scholar
  12. Drushka K, Sprintall J, Gille S, Wijffels S (2012) In situ observations of Madden-Julian Oscillation mixed layer dynamics in the Indian and western Pacific Oceans. J Clim 25(7):2306–2328CrossRefGoogle Scholar
  13. Ducet N, Le Traon P, Reverdin G (2000) Global high-resolution mapping of ocean circulation from TOPEX/Poseidon and ERS-1 and -2. J Geophys Res 105(C8):19,477–19,498CrossRefGoogle Scholar
  14. Eisenman I, Yu L, Tziperman E (2005) Westerly wind bursts: ENSO’s tail rather than the dog? J Clim 18(24):5224–5238CrossRefGoogle Scholar
  15. Farrar J (2011) Barotropic Rossby waves radiating from tropical instability waves in the Pacific Ocean. J Phys Oceanogr 41(6):1160–1181CrossRefGoogle Scholar
  16. Fedorov AV, Hu S, Lengaigne M, Guilyardi E (2014) The impact of westerly wind bursts and ocean initial state on the development, and diversity of El Niño events. Clim Dynam 1–21. doi: 10.1007/s00382-014-2126-4
  17. Fedorov AV (2002) The response of the coupled tropical ocean-atmosphere to westerly wind bursts. Q J R Meteorol Soc 128(579):1–23CrossRefGoogle Scholar
  18. Feng M, Lukas R, Hacker P, Plueddemann A, Weller R (2005) Upper ocean momentum balances in the western equatorial Pacific on the intraseasonal time scale. Deep Sea Res Part I 52(5):749–765CrossRefGoogle Scholar
  19. Gebbie G, Eisenman I, Wittenberg A, Tziperman E (2007) Modulation of westerly wind bursts by sea surface temperature: a semistochastic feedback for ENSO. J Atmos Sci 64(9):3281–3295CrossRefGoogle Scholar
  20. Gebbie G, Tziperman E (2009) Incorporating a semi-stochastic model of ocean-modulated westerly wind bursts into an ENSO prediction model. Theor Appl Climatol 97(1):65–73CrossRefGoogle Scholar
  21. Giese BS, Harrison D (1991) Eastern equatorial Pacific response to three composite westerly wind types. J Geophys Res 96(S01):3239–3248CrossRefGoogle Scholar
  22. Gill A (1980) Some simple solutions for heat-induced tropical circulation. Q J R Meteorol Soc 106(449):447–462CrossRefGoogle Scholar
  23. Graham N, Barnett T (1987) Sea surface temperature, surface wind divergence, and convection over tropical oceans. Science 238(4827):657–659CrossRefGoogle Scholar
  24. Halkides D, Lucas L, Waliser D, Lee T, Murtugudde R (2011) Mechanisms controlling mixed-layer temperature variability in the eastern tropical Pacific on the intraseasonal timescale. Geophys Res Lett 38(17):L17,602Google Scholar
  25. Harrison D (1984) The appearance of sustained equatorial surface westerlies during the 1982 Pacific warm event. Science 224:1099–1102CrossRefGoogle Scholar
  26. Harrison D, Vecchi G (1997) Westerly Wind Events in the Tropical Pacific, 1986–95. J Clim 10(12):3131–3156CrossRefGoogle Scholar
  27. Hendon H, Glick J (1997) Intraseasonal air–sea interaction in the tropical Indian and Pacific Oceans. J Clim 10(4):647–661CrossRefGoogle Scholar
  28. Im SH, An SI, Lengaigne M, Noh Y (2012) Seasonality of tropical instability waves and its feedback to the seasonal cycle in the tropical Eastern Pacific. Sci World J 2012. doi: 10.1100/2012/612048
  29. Jackett D, McDougall T (1995) Minimal adjustment of hydrographic profiles to achieve static stability. J Atmos Oceanic Tech 12(2):381–389CrossRefGoogle Scholar
  30. Jiang C, Thompson L, Kelly K, Cronin M (2009) The roles of intraseasonal Kelvin waves and tropical instability waves in SST variability along the equatorial Pacific in an isopycnal ocean model. J Clim 22(12):3470–3487CrossRefGoogle Scholar
  31. Keen R (1982) The role of cross-equatorial tropical cyclone pairs in the Southern Oscillation. Mon Weather Rev 110:1405–1415CrossRefGoogle Scholar
  32. Keerthi M, Lengaigne M, Vialard J, de Boyer Montégut C, Muraleedharan P (2012) Interannual variability of the tropical Indian Ocean mixed layer depth. Clim Dyn 40(3–4):1–17Google Scholar
  33. Kessler WS (2005) The oceans. In: Lau WKM, Waliser DE (eds) Intraseasonal variability in the atmosphere-ocean climate system, Springer, Berlin, Heidelberg, pp 175–222Google Scholar
  34. Kessler W, McPhaden M, Weickmann K (1995) Forcing of intraseasonal Kelvin waves in the equatorial Pacific. J Geophys Res 100:10,613–10,632CrossRefGoogle Scholar
  35. Kumar BP, Vialard J, Lengaigne M, Murty V, McPhaden M, Cronin M, Pinsard F, Reddy KG (2012a) TropFlux wind stresses over the tropical oceans: evaluation and comparison with other products. Clim Dyn 40(7–8):1–23Google Scholar
  36. Kumar P, Vialard J, Lengaigne M, Murty V, McPhaden M (2012b) TropFlux: air–sea fluxes for the global tropical oceans-description and evaluation. Clim Dyn 38:1521–1543CrossRefGoogle Scholar
  37. Latif M, Biercamp J, Von Storch H (1988) The response of a coupled ocean-atmosphere general circulation model to wind bursts. J Atmos Sci 45(6):964–979CrossRefGoogle Scholar
  38. Legeckis R (1977) Long waves in the eastern equatorial Pacific Ocean: a view from a geostationary satellite. Science 197(4309):1179–1181CrossRefGoogle Scholar
  39. Lengaigne M, Boulanger J, Menkes C, Masson S, Madec G, Delecluse P (2002) Ocean response to the March 1997 westerly wind event. J Geophys Res 107(C12):8015CrossRefGoogle Scholar
  40. Lengaigne M, Boulanger J, Menkes C, Madec G, Delecluse P, Guilyardi E, Slingo J (2003a) The March 1997 westerly wind event and the onset of the 1997/98 El Ninõ: understanding the role of the atmospheric response. J Clim 16(20):3330–3343CrossRefGoogle Scholar
  41. Lengaigne M, Madec G, Menkes C, Alory G (2003b) Impact of isopycnal mixing on the tropical ocean circulation. J Geophys Res 108(C11):3345CrossRefGoogle Scholar
  42. Lengaigne M, Boulanger JP, Menkes C, Delecluse P, Slingo J (2004a) Westerly wind events in the tropical Pacific and their influence on the coupled ocean-atmosphere system: a review. Geophys Monogr Ser 147:49–69Google Scholar
  43. Lengaigne M, Guilyardi E, Boulanger JP, Menkes C, Delecluse P, Inness P, Cole J, Slingo J (2004b) Triggering of El Niño by westerly wind events in a coupled general circulation model. Clim Dyn 23(6):601–620CrossRefGoogle Scholar
  44. Lengaigne M, Menkes C, Aumont O, Gorgues T, Bopp L, André JM, Madec G (2007) Influence of the oceanic biology on the tropical Pacific climate in a coupled general circulation model. Clim Dyn 28(5):503–516CrossRefGoogle Scholar
  45. Lengaigne M, Hausmann U, Madec G, Menkes C, Vialard J, Molines J (2012) Mechanisms controlling warm water volume interannual variations in the equatorial Pacific: diabatic versus adiabatic processes. Clim Dyn 38(5–6):1031–1046CrossRefGoogle Scholar
  46. Locarnini R, Mishonov AV, Antonov JI, Boyer TP, Garcia HE, Baranova OK, Zweng MM, Johnson DR (2010) World Ocean Atlas 2009, p 184Google Scholar
  47. Lopez H, Kirtman BP (2013) Westerly wind bursts and the diversity of ENSO in CCSM3 and CCSM4. Geophys Res Lett 40(17):4722–4727. doi: 10.1002/grl.50913 CrossRefGoogle Scholar
  48. Lopez H, Kirtman BP, Tziperman E, Gebbie G (2013) Impact of interactive westerly wind bursts on ccsm3. Dynam Atmos Ocean 59:24–51. doi: 10.1016/j.dynatmoce.2012.11.001 CrossRefGoogle Scholar
  49. Lucas L, Waliser D, Murtugudde R (2010) Mechanisms governing sea surface temperature anomalies in the eastern tropical Pacific Ocean associated with the boreal winter Madden-Julian Oscillation. J Geophys Res 115(C5):C05,012Google Scholar
  50. Madec G (2008) NEMO ocean engine. Tech. rep., Institut Pierre-Simon Laplace (IPSL), Note du Pole de modélisation 27Google Scholar
  51. Maes C, Sudre J, Garçon V (2010) Detection of the eastern edge of the equatorial Pacific warm pool using satellite-based ocean color observations. SOLA 6:129–132CrossRefGoogle Scholar
  52. Matthews A, Singhruck P, Heywood K (2010) Ocean temperature and salinity components of the Madden–Julian oscillation observed by Argo floats. Clim Dyn 35(7–8):1149–1168. doi: 10.1007/s00382-009-0631-7 CrossRefGoogle Scholar
  53. McPhaden M, Picaut J (1990) El Niño-Southern Oscillation displacements of the western equatorial Pacific warm pool. Science 250(4986):1385–1388CrossRefGoogle Scholar
  54. McPhaden MJ, Hayes SP (1991) On the variability of winds, sea surface temperature, and surface layer heat content in the western equatorial Pacific. J Geophys Res 96:3331–3342CrossRefGoogle Scholar
  55. McPhaden M, Bahr F, Du Penhoat Y, Firing E, Hayes S, Niiler P, Richardson P, Toole J (1992) The response of the western equatorial Pacific Ocean to westerly wind bursts during November 1989 to January 1990. J Geophys Res 97(C9):14,289–14,303CrossRefGoogle Scholar
  56. McPhaden M, Busalacchi A, Cheney R, Donguy J, Gage K, Halpern D, Ji M, Julian P, Meyers G, Mitchum G et al (1998) The Tropical Ocean-Global Atmosphere observing system: a decade of progress. J Geophys Res 103(C7):14,169–14CrossRefGoogle Scholar
  57. McPhaden M (1999) Genesis and evolution of the 1997–98 El Niño. Science 283(5404):950CrossRefGoogle Scholar
  58. McPhaden MJ (2002) Mixed layer temperature balance on intraseasonal timescales in the equatorial Pacific Ocean. J Clim 15(18):2632–2647CrossRefGoogle Scholar
  59. McPhaden MJ (2004) Evolution of the 2002/03 El Niño. Bull Am Meteorol Soc 85(5):677–695CrossRefGoogle Scholar
  60. Menkes C, Vialard J, Kennan S, Boulanger J, Madec G (2006) A modeling study of the impact of tropical instability waves on the heat budget of the eastern equatorial Pacific. J Phys Oceanogr 36(5):847–865CrossRefGoogle Scholar
  61. Nidheesh A, Lengaigne M, Vialard J, Unnikrishnan A, Dayan H (2012) Decadal and long-term sea level variability in the tropical Indo-Pacific Ocean. Clim Dyn 41(2):1–22Google Scholar
  62. Nisha K, Lengaigne M, Gopalakrishna V, Vialard J, Pous S, Peter AC, F Durand SN (2013) Processes of summer intraseasonal sea surface temperature variability along the coasts of India. Ocean Dyn Rev 63(4):329–346Google Scholar
  63. Paulson C, Simpson J (1977) Irradiance measurements in the upper ocean. J Phys Oceanogr 7(6):952–956CrossRefGoogle Scholar
  64. Picaut J, Delcroix T (1995) Equatorial wave sequence associated with warm pool displacements during the 1986–1989 El Niño-La Niña. J Geophys Res 100(C9):18,393–18CrossRefGoogle Scholar
  65. Picaut J, Ioualalen M, Menkes C, Delcroix T, McPhaden M (1996) Mechanism of the zonal displacements of the Pacific warm pool: implications for ENSO. Science 274(5292):1486CrossRefGoogle Scholar
  66. Picaut J, Masia F, Du Penhoat Y (1997) An advective–reflective conceptual model for the oscillatory nature of the ENSO. Science 277(5326):663–666CrossRefGoogle Scholar
  67. Picaut J, Ioualalen M, Delcroix T, Masia F, Murtugudde R, Vialard J (2001) The oceanic zone of convergence on the eastern edge of the Pacific warm pool: a synthesis of results and implications for El Niño-Southern Oscillation and biogeochemical phenomena. J Geophys Res 106(C2):2363–2386CrossRefGoogle Scholar
  68. Qiao L, Weisberg R (1995) Tropical instability wave kinematics: observations from the tropical instability wave experiment. J Geophys Res 100(C5):8677–8693CrossRefGoogle Scholar
  69. Roullet G, Madec G (2000) Salt conservation, free surface, and varying levels: a new formulation for ocean general circulation models. J Geophys Res 105(C10):23,927–23CrossRefGoogle Scholar
  70. Seiki A, Takayabu Y (2007) Westerly wind bursts and their relationship with intraseasonal variations and ENSO. Part I Stat Mon Weather Rev 135(10):3325–3345CrossRefGoogle Scholar
  71. Shinoda T, Hendon H, Glick J (1998) Intraseasonal variability of surface fluxes and sea surface temperature in the tropical western Pacific and Indian Oceans. J Clim 11(7):1685–1702CrossRefGoogle Scholar
  72. Shinoda T, Hendon H (2001) Upper-ocean heat budget in response to the Madden–Julian Oscillation in the western equatorial Pacific. J Clim 14(21):4147–4165CrossRefGoogle Scholar
  73. Trenberth KE, Branstator GW, Karoly D, Kumar A, Lau NC, Ropelewski C (1998) Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J Geophys Res Oceans 103(C7):14,291–14,324CrossRefGoogle Scholar
  74. Tziperman E, Yu L (2007) Quantifying the dependence of westerly wind bursts on the large-scale tropical Pacific SST. J Clim 20(12):2760–2768CrossRefGoogle Scholar
  75. Uppala S, Kållberg P, Simmons A, Andrae U, Bechtold V, Fiorino M, Gibson J, Haseler J, Hernandez A, Kelly G et al (2005) The ERA-40 re-analysis. Q J R Meteorol Soc 131(612):2961–3012CrossRefGoogle Scholar
  76. Vialard J, Delecluse P (1998) An OGCM study for the TOGA decade. Part II: barrier-layer formation and variability. J Phys Oceanogr 28(6):1089–1106CrossRefGoogle Scholar
  77. Vialard J, Menkes C, Boulanger J, Delecluse P, Guilyardi E, McPhaden M, Madec G (2001) A model study of oceanic mechanisms affecting equatorial Pacific sea surface temperature during the 1997–98 El Nino. J Phys Oceanogr 31(7):1649–1675CrossRefGoogle Scholar
  78. Vialard J, Jayakumar A, Gnanaseelan C, Lengaigne M, Sengupta D, Goswami B (2012) Processes of intraseasonal sea surface temperature variability in the Northern Indian Ocean during boreal summer. Clim Dyn 38:1901–1916CrossRefGoogle Scholar
  79. Wang C, Picaut J (2004) Understanding ENSO physics: a review. Geophys Monogr Ser 147:21–48Google Scholar
  80. Wheeler M, Hendon H (2004) An all-season real-time multivariate MJO index: development of an index for monitoring and prediction. Mon Weather Rev 132:1917–1932CrossRefGoogle Scholar
  81. Yu L, Rienecker M (1998) Evidence of an extratropical atmospheric influence during the onset of the 1997–98 El Niño. Geophys Res Lett 25(18):3537–3540CrossRefGoogle Scholar
  82. Yu L, Weller R, Liu W (2003) Case analysis of a role of ENSO in regulating the generation of westerly wind bursts in the western equatorial Pacific. J Geophys Res 108(C4):3128CrossRefGoogle Scholar
  83. Zhang Y, Rossow W, Lacis A, Oinas V, Mishchenko M (2004) Calculation of radiative fluxes from the surface to top of atmosphere based on ISCCP and other global data sets: refinements of the radiative transfer model and the input data. J Geophys Res 109(D19):D19,105CrossRefGoogle Scholar
  84. Zhang C (2005) Madden–Julian Oscillation. Rev Geophys 43:1–36CrossRefGoogle Scholar
  85. Zhang X, McPhaden MJ (2006) Wind stress variations and interannual sea surface temperature anomalies in the eastern equatorial Pacific. J Clim 19(2):226–241CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Kyla Drushka
    • 1
    • 2
    Email author
  • Hugo Bellenger
    • 1
  • Eric Guilyardi
    • 1
  • Matthieu Lengaigne
    • 1
  • Jérôme Vialard
    • 1
  • Gurvan Madec
    • 1
  1. 1.Laboratoire d’Océanographie Expérimentation et Approches Numériques, CNRS, IRD, MNHN, UPMCParis Cedex 05France
  2. 2.Applied Physics LaboratoryUniversity of WashingtonSeattleUSA

Personalised recommendations