Skip to main content

Advertisement

Log in

Impacts of aerosols on dynamics of Indian summer monsoon using a regional climate model

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

A regional climate model, RegCM has been utilized to examine the dynamic impacts of large aerosol radiative forcing on the atmospheric temperature and circulation in India during the monsoon (Jun–Sep) seasons of 2009 and 2010. Surface shortwave radiative forcing at the aerosol hot spots is in the range −25 to −60 W m−2 with the larger values observed during the summer monsoon season of 2010 (due to larger dust load) relative to that in 2009. It is important to note that the summer monsoon rainfall in 2010 was declared to be a normal monsoon as against the deficit rain in 2009. Changes in near surface air temperature show a spatial dipole pattern with the aerosol effect dampening out above 500 hPa with a larger change observed for natural aerosols relative to anthropogenic aerosols. The dipole pattern is characteristics of aerosol-induced change. Aerosols tend to strengthen the summer monsoon zonal mean wind at 850 hPa over the hotspots (larger effect in 2009 than in 2010) whereas there is negligible impact on the corresponding mean meridional wind component. This has resulted in a southward shift of the monsoon circulation during 2010 summer, leading to an increase in upward motion over the core monsoon region and thereby increasing the cloud fraction. This may also be facilitated by the aerosol induced heating in the lower troposphere. In 2009, the upward motion is enhanced to the south of the core monsoon region. The dynamic effects imply a positive feedback of the aerosol direct radiative forcing on the summer monsoon circulation over India.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Albrecht BA (1989) Aerosols, cloud microphysics and fractional cloudiness. Science 245:1227–1230

    Article  Google Scholar 

  • Bollasina MA, Ming Y, Ramaswamy V (2011) Anthropogenic aerosols and the weakening of the South Asian summer monsoon. Science 334:502–505

    Article  Google Scholar 

  • Cavazos C, Todd MC, Schepanski K (2009) Numerical model simulation of the Saharan dust event of 6–11 March 2006 using the Regional Climate Model version 3 (RegCM3). J Geophys Res 114:D12109. doi:10.1029/2008JD011078

    Article  Google Scholar 

  • Das S, Dey S, Dash SK, Basil G (2013) Examining mineral dust transport over the Indian subcontinent using the regional climate model, RegCM4.1. Atmos Res 134:64–76

    Article  Google Scholar 

  • Dash SK, Shekhar MS, Singh GP (2006) Simulation of Indian summer monsoon circulation and rainfall using RegCM3. Theor Appl Climatol 86:161–172

    Article  Google Scholar 

  • Dash SK, Mamgain A, Pattnayak KC, Giorgi F (2012) Spatial and temporal variations in Indian summer monsoon rainfall and temperature: an analysis based on RegCM3 simulations. Pure Appl Geophys 1–20. doi:10.1007/s00024-012-0567-4

  • Dey S, Girolamo LD (2010) A climatology of aerosol optical and microphysical properties over the Indian subcontinent from 9 years (2000–2008) of Multiangle Imaging SpectroRadiometer (MISR) data. J Geophys Res 115:D15204. doi:10.1029/2009JD013395

    Article  Google Scholar 

  • Dey S, Tripathi SN (2008) Aerosol direct radiative effects over Kanpur in the Indo-Gangetic basin, northern India: long-term (2001–2005) observations and implications to regional climate. J Geophys Res 113:D04212. doi:10.1029/2007JD009029

    Google Scholar 

  • Dey S, Tripathi SN, Mishra SK (2008) Probable mixing state of aerosols in the Indo-Gangetic Basin, northern India. Geophys Res Lett 35:L03808. doi:10.1029/2007GL032622

    Google Scholar 

  • Ganguly D, Jayaraman A, Gadhavi H (2006) Physical and optical properties of aerosols over an urban location in western India: seasonal variabilities. J Geophys Res 111:D24206. doi:10.1029/2006JD007392

    Article  Google Scholar 

  • Ganguly D, Rasch PJ, Wang H, Yoon J (2012) Fast and slow responses of the South Asian monsoon system to anthropogenic aerosols. Geophys Res Lett 39:L18804. doi:10.1029/2012GL053043

    Google Scholar 

  • Giorgi F, Jones C, Asrar GR (2009) Addressing climate information needs at the regional level: the CORDEX framework. WMO Bull 58(3):175–183

    Google Scholar 

  • Giorgi F, Coppola E, Solmon F, Mariotti L, Sylla MB, Bi X, Elguindi N, Diro GY, Nair V, Giuliani G, Turuncoglu UU, Cozzini S, Guttler I, O’Brien TA, Tawfik AB, Shalaby A, Zakey AS, Steiner F, Stordal F, Sloan LC, Brankovic C (2012) RegCM4: model description and preliminary tests over multiple CORDEX domains. Clim Res 52:7–29

    Article  Google Scholar 

  • Heymsfeld AJ, McFarquhar GM (2001) Microphysics of INDOEX clean and polluted trade cumulus clouds. J Geophys Res D22:28653–28673

    Article  Google Scholar 

  • Hsieh WC, Collins WD, Liu Y, Chiang JCH, Shie CL, Caldeira K, Cao L (2013) Climate response due to carbonaceous aerosols and aerosol-induced SST effects in NCAR community atmospheric model CAM3.5. Atmos Chem Phys 13:7489–7510

    Article  Google Scholar 

  • Junker C, Liousse C (2008) A global emission inventory of carbonaceous aerosol from historic records of fossil fuel and biofuel consumption for the period 1860–1997. Atmos Chem Phys 8:1195–1207. doi:10.5194/acp-8-1195-2008

    Article  Google Scholar 

  • Kaufman YJ, Tanre D, Remer LA, Vermote EF, Chu A, Holben BN (1997) Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer. J Geophys Res 102:17051–17067

    Article  Google Scholar 

  • Konwar M, Maheshkumar RS, Kulkarni JR, Freud E, Goswami BN, Rosenfeld D (2012) Aerosol control on depth of warm rain in convective clouds. J Geophys Res 117:D13204. doi:10.1029/2012JD017585

    Article  Google Scholar 

  • Krishnamurti TN, Martin A, Krishnamurti R, Simon A, Thomas A, Kumar V (2013) Impacts of enhanced CCN on the organization of convection and recent reduced counts of monsoon depressions. Clim Dyn 41:117–134

    Article  Google Scholar 

  • Lau KM, Kim KM (2006) Observational relationships between aerosol and Asian monsoon rainfall, and circulation. Geophys Res Lett 33:L21810. doi:10.1029/2006GL027546

    Article  Google Scholar 

  • Liousse C, Penner JE, Chuang C, Walton JJ, Eddleman H, Cachier H (1996) A global three-dimensional model study of carbonaceous aerosols. J Geophys Res 101(D14):19411–19432. doi:10.1029/95JD03426

    Article  Google Scholar 

  • Mazumdar AB, Khole M, Devi SS (2010) Weather in India, Monsoon season (June to September 2009). Mausam 61(3):411–454

    Google Scholar 

  • Mazumdar AB, Khole M, Devi SS (2011) Weather in India, Monsoon season (June to September 2010). Mausam 62(3):463–512

    Google Scholar 

  • Moorthy KK, Sunilkumar SV, Pillai PS, Parameswaran K, Nair PR, Ahmed YN, Ramgopal K, Narasimhulu N, Reddy RR, Vinoj V, Satheesh SK, Niranjan K, Rao BM, Brahmanandam PS, Saha A, Badarinath KVS, Kiranchand TR, Latha KM (2005) Wintertime spatial characteristics of boundary layer aerosols over peninsular India. J Geophys Res 110:D08207. doi:10.1029/2004JD005520

    Article  Google Scholar 

  • Moorthy KK, Babu SS, Manoj MR, Satheesh SK (2013) Buildup of aerosols over the Indian region. Geophys Res Lett 40:1011–1014. doi:10.1002/grl.50165

    Article  Google Scholar 

  • Nair VS, Solmon F, Giorgi F, Mariotti L, Babu SS, Moorthy KK (2012) Simulation of South Asian aerosols for regional climate studies. J Geophys Res 117(D4):1–17

    Article  Google Scholar 

  • Qian Y, Giorgi F, Huang Y (2001) Regional simulation of anthropogenic sulfur over east Asia and its sensitivity to model parameters. Tellus 53:171–191

    Article  Google Scholar 

  • Ramachandran S, Cherian R (2008) Regional and seasonal variations in aerosol optical characteristics and their frequency distributions over India during 2001–2005. J Geophys Res 113:D08207. doi:10.1029/2007JD008560

    Google Scholar 

  • Ramachandran S, Kedia S, Srivastava R (2012) Aerosol optical depth trends over different regions of India. Atmos Environ 49:338–347

    Article  Google Scholar 

  • Ramanathan V, Crutzen PJ, Lelieveld J, Mitra AP, Althausen D, Anderson J, Andreae MO, Cantrell W, Cass GR, Chung CE, Clarke AD, Coakley JA, Collins WD, Conant WC, Dulac F, Heintzenberg J, Heymsfeld AJ, Holben B, Howell S, Hudson J, Jayaraman A, Kiehl JT, Krishnamurti TN, Lubin D, McFarquhar G, Novakov T, Ogren JA, Podgorny IA, Prather K, Priestley K, Prospero JM, Quinn PK, Rajeev K, Pash P, Rupert S, Sadourny R, Satheesh SK, Shaw GE, Sheridan P, Valero FPJ (2001) Indian Ocean experiment: an integrated assessment of the climate forcing and effects of the great Indo-Asian haze. J Geophys Res 106(D22), 28371–28398

  • Ramanathan V, Chung C, Kim D, Bettge T, Buja L, Kiehl JT, Washington WM, Fu Q, Sikka DR, Wild M (2005) Atmospheric brown clouds: impacts on South Asian climate and hydrological cycle. PNAS 102:5326–5333

    Article  Google Scholar 

  • Remer LA, Kleidman RG, Levy R, Kaufman YJ, Tanre D, Mattoo S, Martins JV, Ichoku C, Koren I, Hongbin YU, Holben BN (2008) Global aerosol climatology from the MODIS satellite sensors. J Geophys Res 113:D14S07. doi:10.1029/2007JD009661

  • Satheesh SK, Moorthy KK, Babu SS, Vinoj V, Dutt CBS (2008) Climate implications of large warming by elevated aerosol over India. Geophys Res Lett 35:L19809. doi:10.1029/2008GL034944

    Article  Google Scholar 

  • Satheesh SK, Vinoj V, Krishnamoorthy K (2010) Assessment of aerosol radiative impact over oceanic regions adjacent to Indian subcontinent using multisatellite analysis. Meteorol Adv. doi:10.1155/2010/139186

  • Sengupta K, Dey S, Sarkar M (2013) Structural evolution of monsoon clouds in the Indian CTCZ. Geophys Res Lett 40:5295–5299

    Article  Google Scholar 

  • Singh RP, Dey S, Tripathi SN, Tare V, Holben BN (2004) Variability of aerosol parameters over Kanpur, northern India. J Geophys Res 109:D23206. doi:10.1029/2004JD004966

    Article  Google Scholar 

  • Sinha P, Mohanty UC, Kar SC, Dash SK, Robertson AW, Tippett MK (2013) Seasonal prediction of the Indian summer monsoon rainfall using canonical correlation analysis of the NCMRWF global model products. Int J Climatol 33:1601–1614

    Article  Google Scholar 

  • Solmon F, Giorgi F, Liousse C (2006) Aerosol modeling for regional climate studies: application to anthropogenic particles and evaluation over a European/African domain. Tellus B 58(1):51–72

    Article  Google Scholar 

  • Solmon F, Elguindi N, Mallet M (2012) Radiative and climatic effects of dust over West Africa, as simulated by a regional climate model. Clim Res 52:97–113

    Article  Google Scholar 

  • Tanre D, Kaufman YJ, Herman M, Mattoo S (1997) Remote sensing of aerosol properties over oceans using the MODIS/EOS spectral radiances. J Geophys Res 102:16971–16988

    Article  Google Scholar 

  • Tripathi SN, Tare V, Chinnam N, Srivastava AK, Dey S, Agarwal A, Kishore S, Lal RB, Manar M, Kanawade VP, Chauhan SSS, Sharma M, Reddy RR, Gopal KR, Narasimhulu K, Reddy LSS, Gupta S, Lal S (2006) Measurements of atmospheric parameters during Indian Space Research organization geosphere biosphere programme land campaign II at a typical location in the Ganga basin: 1. Physical and optical properties. J Geophys Res 111:D23209. doi:10.1029/2006JD007278

  • Yue X, Liao H, Wang HJ, Li SL, Tang JP (2011) Role of sea surface temperature responses in simulation of the climatic effect of mineral dust aerosol. Atmos Chem Phys Discuss 11:1121–1152

    Article  Google Scholar 

  • Zakey AS, Solmon F, Giorgi F (2006) Development and testing of a desert dust module in a regional climate model. Atmos Chem Phys 6:4687–4704

    Article  Google Scholar 

  • Zanis P (2009) A study on the direct effect of anthropogenic aerosols on near surface air temperature over Southeastern Europe during summer 2000 based on regional climate modeling. Ann. Geo. 27:3977–3988

    Article  Google Scholar 

  • Zanis P, Ntogras C, Zakey A, Pytharoulis I, Karacostas T (2012) Regional climate feedback of anthropogenic aerosols over Europe using RegCM3. Clim Res 52:267–278

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by financial grant from Ministry of Earth Sciences, Govt. of India under CTCZ Programme (MoES/CTCZ/16/28/10) through a research project operational at IITD (IITD/IRD/RP02479). The first author is thankful to CSIR for providing scholarship to carry out research work in IIT Delhi. The authors acknowledge ICTP for providing the RegCM4.1 model (http://eforge.ictp.it). The efforts of PIs of Kanpur AERONET site (Drs. Brent Holben, R. P. Singh and S. N. Tripathi) are acknowledged. We acknowledge the comments by the anonymous reviewers who helped us improving the quality of the original version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sagnik Dey.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, S., Dey, S. & Dash, S.K. Impacts of aerosols on dynamics of Indian summer monsoon using a regional climate model. Clim Dyn 44, 1685–1697 (2015). https://doi.org/10.1007/s00382-014-2284-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-014-2284-4

Keywords

Navigation