Climate Dynamics

, Volume 44, Issue 7–8, pp 1935–1955 | Cite as

A twentieth-century reanalysis forced ocean model to reconstruct the North Atlantic climate variation during the 1920s

  • W. A. MüllerEmail author
  • D. Matei
  • M. Bersch
  • J. H. Jungclaus
  • H. Haak
  • K. Lohmann
  • G. P. Compo
  • P. D. Sardeshmukh
  • J. Marotzke


The observed North Atlantic multi-decadal variability for the period 1872–2009 is reconstructed with the Max Planck Institute ocean model, which is forced with an ensemble of the atmospheric twentieth century reanalysis. Special emphasis is put on the early part of the experiments, which includes a prominent climate variation during the 1920s. The experiments are in agreement with selected hydrographic records, indicating a transition from cold and fresh North Atlantic water properties, prior to the 1920 climate variation, towards warm and saline waters afterwards. Examining the variation reveals that sea level pressure (SLP) anomalies prior to the 1900s resemble a negative phase of North Atlantic Oscillation and associated weak winds result in a weak North Atlantic Current (NAC) and sub-polar gyre (SPG). This leads to a reduced transport of warm and saline waters into the higher latitudes. Simultaneously, Arctic freshwater release results in the accumulation of cold and fresh water properties, which cover the upper layers in the Labrador Sea and subsequently suppress convection. From the 1910s, the Arctic freshwater export is reduced, and, NAC and SPG are strengthened as a result of an increased SLP gradient over the North Atlantic. Concurrently, Labrador Sea convection and Atlantic meridional overturning circulation (AMOC) increase. The intensified NAC, SPG, and AMOC redistribute sub-tropical water into the North Atlantic and Nordic Seas, thereby increasing observed and modelled temperature and salinity during the 1920s.


Climate variability Ocean state reconstruction North Atlantic 1920s warming 



We thank the German Computing Centre (DKRZ) for the provision of computing resources. This research was supported by the German Ministry of Education and Research (BMBF) under the MiKlip (MultiClip 01LP1158A, DroughtClip 01LP1145A) and RACE projects and by the German Science Foundation (DFG) funded project CliSAP. G.P. Compo is supported by the Office of Science (BER), U.S. Department of Energy and the NOAA Climate Program Office. The Twentieth Century Reanalysis Project used resources of the National Energy Research Scientific Computing Center and the NERSC Science Gateway managed by Lawrence Berkeley National Laboratory and of the Oak Ridge Leadership Computing Facility at Oak Ridge National Laboratory, which are supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 and Contract No. DE-AC05-00OR22725, respectively. Support for the Twentieth Century Reanalysis Project dataset is provided by the U.S. Department of Energy, Office of Science Innovative and Novel Computational Impact on Theory and Experiment (DOE INCITE) program, and Office of Biological and Environmental Research (BER), and by the National Oceanic and Atmospheric Administration Climate Program Office. We further thank Sabine Kümmerle and Davide Zanchettin for useful suggestions and Thorben Schmith for the provision of the freshwater reconstructions. Special thanks is addressed to Jeffrey Whittaker for assistance providing the Twentieth Century Reanalysis data.


  1. Allan R, Ansell T (2006) A new globally complete monthly historical gridded mean sea level pressure dataset (HadSLP2): 1850–2004. J Clim 19:5816–5842CrossRefGoogle Scholar
  2. Allan R, Brohan P, Compo GP, Stone R, Luterbacher J, Bronnimman S (2011) The international atmospheric circulation reconstructions over the earth (ACRE) initiative. Bull Am Meteorol Soc 92:1421–1425CrossRefGoogle Scholar
  3. Bengtsson L (1980) On the use of time sequence of surface pressure in four-dimensional data assimilation. Tellus 32:189–197CrossRefGoogle Scholar
  4. Bengtsson L, Semenov V, Johannessen OM (2004) The early 20th century warming in the Arctic—a possible mechanism. J Clim 17:4045–4057CrossRefGoogle Scholar
  5. Bersch M, Yashayaev I, Koltermann KP (2007) Recent changes of the thermohaline circulation in the subpolar North Atlantic. Ocean Dyn 57:223–235CrossRefGoogle Scholar
  6. Brönnimann S (2009) Early twentieth-century warming. Nat Geosci 2:735–736CrossRefGoogle Scholar
  7. Brönnimann S, Compo GP (2012) Ozone highs and associated flow features in the first half of the twentieth century in different data sets. Meteorol Zeit 21:49–59CrossRefGoogle Scholar
  8. Brönnimann S, Martius O, von Waldow H, Welker C, Luterbacher J, Compo GP, Sardeshmukh PD, Usbeck T (2012a) Extreme winds at northern mid-latitudes since 1871. Meteorol Zeit 21:13–27CrossRefGoogle Scholar
  9. Brönnimann S, Grant AN, Compo GP, Ewen T, Griesser T, Fischer AM, Schraner M, Stickler A (2012b) A multi-data set comparison of the vertical structure of temperature variability and change over the Arctic during the past 100 years. Clim Dyn 39:1577–1598CrossRefGoogle Scholar
  10. Compo GP, Sardeshmukh PD (2010) Removing ENSO-related variations from the climate record. J Clim 23:1957–1978. doi: 10.1175/2009JCLI2735.1 CrossRefGoogle Scholar
  11. Compo GP, Whitaker JS, Sardeshmukh PD (2006) Feasibility of a 100-year reanalysis using only surface pressure data. Bull Am Meteorol Soc 87:175–190CrossRefGoogle Scholar
  12. Compo GP, Whitaker JS, Sardeshmukh PD, Matsui N, Allan RJ, Yin X, Gleason BE, Vose RS, Rutledge G, Bessemoulin P, Brönnimann S, Brunet M, Crouthamel RI, Grant AN, Groisman PY, Jones PD, Kruk MC, Kruger AC, Marshall GJ, Mauger M, Mok HY, Nordli Ø, Ross TF, Trigo RM, Wang XL, Woodruff SD, Worley SJ (2011) The twentieth century reanalysis project. Q J R Meteorol Soc 137:1–28CrossRefGoogle Scholar
  13. Compo GP, Sardeshmukh PD, Whitaker JS, Brohan P, Jones PD, McColl C (2013) Independent confirmation of global land warming without the use of station temperatures. Geophys Res Let. doi: 10.1002/grl.50425 Google Scholar
  14. Cunningham SA, Kanzow T, Rayner D, Baringer MO, Johns WE, Marotzke J, Longworth HR, Grant EM, Hirschi JJ-M, Beal LM, Meinen CS, Bryden HL (2007) Temporal variability of the Atlantic meridional overturning circulation at 26.5°N. Nature 317:35–937Google Scholar
  15. Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, eljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Holm EV, Isaksen L, Kallberg P, Kohler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette J-J, Park B-K, Peubey C, de Rosnay P, Tavolato C, Thepaut J-N, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597Google Scholar
  16. Delworth TL, Mann ME (2000) Observed and simulated multidecadal variability in the Northern Hemisphere. Clim Dyn 16:661–676CrossRefGoogle Scholar
  17. Dickson R, Lazier J, Meincke J, Rhines P, Swift J (1996) Long-term coordinated chnages in the convective activity of the North Atlantic. Prog Oceanog 38:241–295Google Scholar
  18. Dickson R, Yashayaev I, Meincke J, Turrell B, Dye S, Holfort J (2002) Rapid freshening of the deep North Atlantic Ocean over the past four decades. Nature 416:832–836CrossRefGoogle Scholar
  19. Donat MG, Renggli D, Wild S, Alexander LV, Leckebusch GC, Ulbrich U (2011) Reanalysis suggests long-term upward trends in European storminess since 1871. Geophy Res Lett 38:L14703. doi: 10.1029/2011GL047995 CrossRefGoogle Scholar
  20. Dooley HD, Martin JH, Ellett JD (1984) Abnormal hydrographic conditions in the Northeast Atlantic during the 1970s. Rapports et Proces-Verbaux des Reunions Conseil International pour l`Exploration de la Mer 185:179–187Google Scholar
  21. Drinkwater KF (2006) The regime shift of the 1920s and 1930 in the North Atlantic. Prog Oceanogr 68:134–151CrossRefGoogle Scholar
  22. Eden C, Jung T (2001) North Atlantic interdecadal variability: ocean response the North Atlantic Oscillation (1865–1997). J Clim 14:676–691CrossRefGoogle Scholar
  23. Eden C, Willebrand J (2001) Mechanism of interannual to decadal variability on the North Atlantic circulation. J Clim 14:2266–2280CrossRefGoogle Scholar
  24. Frankcombe LM, Dijkstra HA (2011) The role of Atlantic–Arctic exchange in North Atlantic multi-decadal variability. Geophys Res Let 38. doi: 10.1029/2011GL048158
  25. Giese BS et al (2010) The 1918/1919 El Niño. Bull Am Meteorol Soc 91:177–183CrossRefGoogle Scholar
  26. Griffies SM, Biastoch A, Böning C, Bryan F, Danabasoglu G, Chassignet EP, England MH, Gerdes R, Haak H, Hallberg RW, Hazeleger W, Jungclaus J, Large WG, Madec G, Pirani A, Samuels BL, Scheinert M, Gupta AS, Severijns CA, Simmons HL, Treguier AM, Winton M, Yeager S, Yin J (2009) Coordinated ocean-ice reference experiments (COREs). Ocean Model 26:1–46CrossRefGoogle Scholar
  27. Haak H (2004) Simulation of low-frequency climate variability in the North Atlantic and Arctic. PhD Thesis, MPI-M reports on earth system science 1:1:124Google Scholar
  28. Haak H, Jungclaus J, Mikolajewicz U, Latif M (2003) Formation and propagation of great salinity anomalies. Geophys Res Lett 30. doi: 10.1029/2003GL017065
  29. Hakkinen S, Rhines PB, Worthen DL (2011) Atmospheric blocking and Atlantic multidecadal ocean variability. Science 334:655–659CrossRefGoogle Scholar
  30. Johannessen OM, Bengtsson L, Miles MW, Kuzmina SI, Semenov VA, Alekseev GV, Nagurnyi AP, Zakharov VF, Bobylev LP, Pettersson LH, Hasselmann K, Cattle HP (2004) Arctic climate change: observed and modelled temperature and sea-ice variability. Tellus 56A:328–341CrossRefGoogle Scholar
  31. Jones PD, Harpham C, Briffa KR (2012) Lamb weather types derived from reanalysis products. Int J Climatol 33:1129–1139CrossRefGoogle Scholar
  32. Jungclaus JH, Haak H, Latif M, Mikolajewicz U (2005) Arctic-North Atlantic interactions and multidecadal variability of the Meridional Overturning Circulation. J Clim 18:4013–4031CrossRefGoogle Scholar
  33. Jungclaus JH, Keenlyside N, Botzet M, Haak H, Luo JJ, Latif M, Marotzke J, Mikolajewicz U, Roeckner E (2006) Ocean Circulation and Tropical Variability in the Coupled Model ECHAM5/MPI-OM. J Clim 19:3952–3972CrossRefGoogle Scholar
  34. Kalnay E, Kanamitsu M, Kister R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Leetmaa A, Reynolds B, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471CrossRefGoogle Scholar
  35. Kanzow T, Cunningham SA, Johns WE, Hirschi JJM, Marotzke J, Baringer MO, Meinen CS, Chidichimo MP, Atkinson C, Beal LM, Bryden HL, Collins J (2010) Seasonal variability of the Atlantic meridional overturning circulation at 26.5°N. J Clim 23:5678–5698CrossRefGoogle Scholar
  36. Koenigk T, Mikolajewicz U, Haak H, Jungclaus JH (2008) Modeling the sea ice export through Fram Strait. In: Dickson B, Meincke J, Rhines P (eds) Arctic-Subarctic Ocean fluxes—defining the role of the Northern Seas in climate. Chapter 8. Springer, BerlinGoogle Scholar
  37. Krüger O, Schenk F, Feser F, Weisse R (2013) Inconsistencies between long-term trends in storminess derived from the 20CR reanalysis and observations. J Clim 26:868–874CrossRefGoogle Scholar
  38. Lee SK, Park W, van Sebille E, Baringer MO, Wang C, Enfield DB, Yeager SG, Kirtman BP (2011) What caused the significant increase in the North Atlantic heat content since the mid 20th century? Geophys Res Lett 38. doi: 10.1029/2011GL048856
  39. Matei D, Baehr J, Jungclaus JH, Haak H, Müller WA, Marotzke J (2012) Multiyear prediction of monthly mean Atlantic meridional overturning circulation at 26.5ºN. Science 335:76–79CrossRefGoogle Scholar
  40. Nuñez-Riboni I, Bersch M, Haak H, Jungclaus JH, Lohmann K (2012) A multi-decadal meridional displacement of the Subpolar Front in the Newfoundland Basin. Ocean Sci 8:91–102CrossRefGoogle Scholar
  41. Oberhuber J (1988) An atlas based on the COADS data set: The budget of heat, buoyancy and turbulent kinetic energy at the surface of the global ocean. Technical report 15, Max-Planck Institut für Meteorologie (MPI)Google Scholar
  42. Oberhuber JM (1993) Simulation of the Atlantic circulation with a coupled sea ice-mixed layer-isopycnal general circulation model. Part I: model description. J Phys Ocean 23:808–829CrossRefGoogle Scholar
  43. Olsen SM, Hansen B, Quadfasel D, Østerhus S (2008) Observed and modelled stability of overflow across the Greenland–Scotland ridge. Nature 455:519–522CrossRefGoogle Scholar
  44. Pegion K, Sardeshmukh PD (2011) Prospects for improving subseasonal predictions. Mon Weather Rev 139:3648–3666CrossRefGoogle Scholar
  45. Polyakov IV, Bekryaev R, Alekseev GV, Bhatt US, Colony RL, Johnson M, Makshtas AP, Walsh D (2003) Variability and trends of air temperature and pressure in the maritime Arctic, 1875–2000. J Clim 16:2067–2077CrossRefGoogle Scholar
  46. Polyakov IV, Bhatt US, Simmons HL, Walsh D, Walsh JE, Zhang X (2005) Multidecadal variability of North Atlantic temperature and salinity during the twentieth century. J Clim 18:4562–4581CrossRefGoogle Scholar
  47. Polyakov IV, Alexeev VA, Belchansky GI, Dmitrenko I, Ivanov VV, Kirillov S, Korablev A, Steele M, Timokhov L, Yashayev I (2008) Arctic Ocean freshwater changes over the past 100 years and their causes. J Clim 21:364–384CrossRefGoogle Scholar
  48. Polyakov IV, Alexeev VA, Bhatt US, Polyakova EI, Zhang X (2010) North Atlantic warming: pattern of long-term trend and multi-decadal variability. Clim Dyn 34:439–457CrossRefGoogle Scholar
  49. Ray S, Giese BS (2012) Historical changes in El Niño and La Niña characteristics in an ocean reanalysis. J Geophys Res 117:11007. doi: 10.1029/2012JC008031 CrossRefGoogle Scholar
  50. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108:4407. doi: 10.1029/2002JD002670 CrossRefGoogle Scholar
  51. Reverdin G (2010) North Atlantic subpolar gyre surface variability (1895–2009). J Clim 23:4571–4584CrossRefGoogle Scholar
  52. Reverdin G, Cayan D, Dooley HD, Ellett DJ, Levitus S, du Penhoat Y, Dessier A (1994) Surface salinity of the North Atlantic: can we reconstruct its fluctuations over the last one hundred years? Prog Oceanogr 33:303–346CrossRefGoogle Scholar
  53. Richter TO, Peeters FJC, van Weering TCE (2009) Late Holocene surface water temperature and variability, Feni Drift, NE Atlantic Ocean. Quat Sci Rev 28:1941–1955CrossRefGoogle Scholar
  54. Robson J, Sutton R, Lohmann K, Smith D, Palmer M (2012) The causes of the rapid warming in the North Atlantic Ocean in the mid 1990s. J Clim 25:4116–4134CrossRefGoogle Scholar
  55. Rogers JC (1985) Atmospheric circulation changes associated with the warming over the northern North Atlantic in the 1920s. J Clim 24:1303–1310Google Scholar
  56. Schmith T, Hansen C (2003) Fram Strait ice export during the nineteenth and twentieth centuries reconstructed from a multiyear sea ice index from southwestern Greenland. J Clim 16:2782–2791CrossRefGoogle Scholar
  57. Smed J (1943) Annual and seasonal variations in the salinity of the North Atlantic surface waters. Conseil Permanent International pour l'Exploration de la Mer, Proces et Verbaux 112:77–94Google Scholar
  58. Sutton R, Dong B (2012) Atlantic Ocean influence on a shift in European climate in the 1990s. Nat Geosci 5:788–792CrossRefGoogle Scholar
  59. Wang XL, Feng Y, Compo GP, Swail VR, Zwiers FW, Allan RJ, Sardeshmukh PD (2013) Trends and low frequency variability of extra-tropical cyclone activity in the ensemble of twentieth century reanalysis. Clim Dyn 40:2775–2800CrossRefGoogle Scholar
  60. Whitaker JS, Hamill TM (2002) Ensemble data assimilation without perturbed observations. Mon Weather Rev 130:1913–1924CrossRefGoogle Scholar
  61. Whitaker JS, Compo GP, Thépaut J-N (2009) A comparison of variational and ensemble-based data assimilation systems for reanalysis of sparse observations. Mon Weather Rev 137:1991–1999CrossRefGoogle Scholar
  62. Wood KR, Overland JE (2010) Eraly 20th century Arctic warming in retrospect. Int J Climatol 30:1269–1279Google Scholar
  63. Wu P, Haak H,Wood R, Jungclaus JH, Furevik T (2008) Simulating the terms in the Arctic hydrological budget. In: B Dickson, J Meincke, P Rhines (eds) Arctic-Subarctic Ocean fluxes—defining the role of the Northern Seas in climate. Chapter 8. Springer, BerlinGoogle Scholar
  64. Yashayaev I, Lazier JRN, Clarke RA (2003) Temperature and salinity in the central Labrador Sea. ICES Mer Symp Ser 219:3239Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • W. A. Müller
    • 1
    Email author
  • D. Matei
    • 1
  • M. Bersch
    • 2
  • J. H. Jungclaus
    • 1
  • H. Haak
    • 1
  • K. Lohmann
    • 1
  • G. P. Compo
    • 3
    • 4
  • P. D. Sardeshmukh
    • 3
    • 4
  • J. Marotzke
    • 1
  1. 1.Max Planck Institute for MeteorologyHamburgGermany
  2. 2.University of HamburgHamburgGermany
  3. 3.University of Colorado, Cooperative Institute for Research in Environmental SciencesBoulderUSA
  4. 4.Physical Sciences DivisionNOAA Earth System Research LaboratoryBoulderUSA

Personalised recommendations