Climate Dynamics

, Volume 45, Issue 1–2, pp 425–440 | Cite as

Inter-annual variability of precipitation over Southern Mexico and Central America and its relationship to sea surface temperature from a set of future projections from CMIP5 GCMs and RegCM4 CORDEX simulations

  • Ramón Fuentes-Franco
  • Erika Coppola
  • Filippo Giorgi
  • Edgar G. Pavia
  • Gulilat Tefera Diro
  • Federico Graef
Article

Abstract

An ensemble of future climate projections performed with the regional climate model RegCM4 is used to assess changes in inter-annual variability of precipitation over Southern Mexico and Central America (SMECAM). Two different Global Climate Models (GCMs) from the coupled model intercomparison project phase 5 are used to provide boundary conditions for two different RegCM4 configurations. This results in four regional climate projections extending from 1970 to 2100 for the greenhouse gas representative concentration pathway RCP8.5. The precipitation variability over the SMECAM region and its dependence on the gradient between Atlantic and Pacific sea surface temperature (SST) anomalies are verified by reproducing SST anomaly patterns during wettest and driest years similar to those seen in observational datasets. RegCM4 does a comparably better job than the driving GCMs. This strong relationship between precipitation and SST anomalies does not appear to change substantially under future climate conditions. For the rainy season, June to September, we find a future change in inter-annual variability of precipitation towards a much greater occurrence of very dry seasons over the SMECAM region, with this change being more pronounced in the regional than in the global model projections. A greater warming of the Tropical Northeastern Pacific (TNP) compared to the Tropical North Atlantic (TNA), which causes stronger wind fluxes from the TNA to the TNP through the Caribbean Low Level Jet, is identified as the main process responsible for these drier conditions.

Keywords

Interannual variability Change CORDEX Southern Mexico Central America 

Notes

Acknowledgments

We are grateful to three anonymous reviewers who helped us to improve our original manuscript. This work has been partially funded by the Project “NextData” of the Italian Ministry for Education, University and Research, and the Italian Ministry of Environment, Land and Sea. Additional support came from the Mexican National Council of Science and Technology.

References

  1. Christensen JH et al (2007) Regional climate model projections. Climate change 2007: the physical science basis. Contribution of WGI to the IPCC AR4. In: Solomon S et al (eds) Cambridge University Press, CambridgeGoogle Scholar
  2. Alexander MA, Bladé I, Newman M, Lanzante JR, Lau NC, Scott JD (2002) The atmospheric bridge: the influence of ENOS teleconnections on air-sea interaction over the global oceans. J Clim 15(16):2205–2231CrossRefGoogle Scholar
  3. Castro CL, Chang H-I, Dominguez F, Carrillo C, Schemm J-K, Juang MH (2012) Can a regional climate model improve the ability to forecast the North American Monsoon? J Clim 25:8212–8237CrossRefGoogle Scholar
  4. Coppola E, Giorgi F (2010) An assessment of temperature and precipitation change projections over Italy from recent global and regional climate model simulations. Int J Clim 30(1):11–32Google Scholar
  5. Coppola E, Giorgi F, Raffaele F, Fuentes-Franco F, Giuliani G, LLopart-Pereira M, Mamgain A, Mariotti L, Diro GT, Torma C (2014) The bias and climate change signal in the phase I CREMA experiment (submitted)Google Scholar
  6. Dickinson RE, Henderson-Sellers A, Kennedy PJ (1993) Biosphere–atmosphere transfer scheme (BATS) version1E as coupled to the NCAR community model. In: NCAR Technical report. TN-387 + STR, NCAR, Boulder, COGoogle Scholar
  7. Diro GT, Rauscher SA, Giorgi F, Tompkins AM (2012) Sensitivity of seasonal climate and diurnal precipitation over Central America to land and sea surface schemes in RegCM4. Clim Res 52:31–48CrossRefGoogle Scholar
  8. Diro GT, Giorgi F, Fuentes-Franco R, Walsh KJE, Giuliani G, Coppola E (2014) Tropical cyclones in an ensemble of regional climate change projections with RegCM4 over the CORDEX Central America domain (submitted)Google Scholar
  9. Elguindi N, Giorgi F, Turuncoglu U (2013) Assessment of CMIP5 global model simulations over the subset of CORDEX domains used in the phase I CREMA. Clim Change. doi:10.1007/S10584-013-0935-9 Google Scholar
  10. Emanuel K (1991) A scheme for representing cumulus convection in large scale models. J Atmos Sci 48:2313–2335CrossRefGoogle Scholar
  11. Enfield DB (1996) Relationship of inter-American rainfall to tropical Atlantic and Pacific SST variability. Geophys Res Lett 23:3305–3308. doi:10.1016/S0921-8181(02)00193-5 CrossRefGoogle Scholar
  12. Enfield DB, Alfaro EJ (1999) The dependence of Caribbean rainfall on the interaction of the tropical Atlantic and Pacific Oceans. J Clim 12(7):2093–2103CrossRefGoogle Scholar
  13. Englehart PJ, Douglas AV (2002) Mexico’s summer rainfall patterns: an analysis of regional modes and changes in their teleconnectivity. Atmósfera 15:147–164Google Scholar
  14. Fuentes-Franco R, Coppola E, Giorgi F, Graef F, Pavia EG (2014) Assessment of RegCM4 simulated inter-annual variability and daily-scale statistics of temperature and precipitation over Mexico. Clim Dyn 42:629–647. doi:10.1007/s00382-013-1686-z CrossRefGoogle Scholar
  15. Giorgi F (2006) Climate change hot-spots. Geophys Res Lett 33:L08707. doi:10.1029/2006GL025734 Google Scholar
  16. Giorgi F, Bi X (2005) Updated regional precipitation and temperature changes for the 21st century from ensembles of recent AOGCM simulations. Geophys Res Lett 32(21):L21715. doi:10.1029/2005GL024288 CrossRefGoogle Scholar
  17. Giorgi F, Marinucci MR, Bates GT (1993a) Development of a second generation regional climate model (REGCM2). Part I: boundary layer and radiative transfer processes. Mon Weather Rev 121:2794–2813CrossRefGoogle Scholar
  18. Giorgi F, Marinucci MR, Bates GT, DeCanio G (1993b) Development of a second generation regional climate model (REGCM2). Part II: convective processes and assimilation of lateral boundary conditions. Mon Weather Rev 121:2814–2832CrossRefGoogle Scholar
  19. Giorgi F, Jones C, Asrar GR (2009) Addressing climate information needs at the regional level: the CORDEX framework. World Meteorol Organ Bull 58(3):175Google Scholar
  20. Giorgi F et al (2012) RegCM4: model description and preliminary tests over multiple CORDEX domains. Clim Res 52:7–29CrossRefGoogle Scholar
  21. Giorgi F, Coppola E, Raffaele F, Diro GT, Fuentes-Franco F, Giuliani G, Mamgain A, LLopart-Pereira M, Mariotti L, Torma C (2014) Changes in extremes and hydroclimatic regimes in the CREMA ensemble projections. Clim Change 125:1–5. doi:10.1007/s10584-014-1166-4 CrossRefGoogle Scholar
  22. Grell GA (1993) Prognostic evaluation of assumptions used by cumulus parameterizations. Mon Weather Rev 121:764–787CrossRefGoogle Scholar
  23. Hastenrath S (1967) Rainfall distribution and regime in Central America. Arch Meteorol Geophys Bioklimatol Ser B 15:201–241CrossRefGoogle Scholar
  24. Holtslag A, De Bruijn E, Pan HL (1990) A high resolution air mass transformation model for short range weather forecasting. Mon Weather Rev 118:1561–1575CrossRefGoogle Scholar
  25. Hu ZZ, Kumar A, Huang B, Xue Y, Wang W, Jha B (2011) Persistent atmospheric and oceanic anomalies in the North Atlantic from summer 2009 to summer 2010. J Clim 24(22):5812–5830CrossRefGoogle Scholar
  26. Huffman G, Adler R, Bolvin D, Gu G et al (2007) The TRMM Multisatellite Precipitation Analysis (TMPA): quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J Hydrometeorol 8:38–55CrossRefGoogle Scholar
  27. Jones RG, Noguer M, Hassell D, Hudson D, Wilson S, Jenkins G, Mitchell J (2004) Generating high resolution climate change scenarios using PRECIS (manual). Hadley Centre for Climate Prediction and Research Met Office, Exeter, p 40Google Scholar
  28. Karmalkar AV, Bradley RS, Diaz HF (2011) Climate change in Central America and Mexico: regional climate model validation and climate change projections. Clim Dyn 37(3–4):605–629CrossRefGoogle Scholar
  29. Karmalkar AV, Taylor MA, Campbell J, Stephenson T, New M, Centella A, Charlery J (2013) A review of observed and projected changes in climate for the islands in the Caribbean. Atmósfera 26(2):283–309CrossRefGoogle Scholar
  30. Karnauskas B, Busalacchi AJ (2009) The role of SST in the East Pacific warm pool in the interannual variability of Central American rainfall. J Clim 22:2605–2623CrossRefGoogle Scholar
  31. Kiehl J, Hack J, Bonan G, Boville B, Briegleb B, Williamson D, Rasch P (1996) Description of the NCAR community climate model (CCM3). In: NCAR Technical report. TN-420 + STR, NCAR, Boulder, CO, USAGoogle Scholar
  32. Klein SA, Soden BJ, Lau NC (1999) Remote sea surface temperature variations during ENOS: evidence for a tropical atmospheric bridge. J Clim 12(4):917–932CrossRefGoogle Scholar
  33. Knaff JA (1997) Implications of summertime sea level pressure anomalies in the tropical Atlantic region. J Clim 10(4):789–804CrossRefGoogle Scholar
  34. Kozar ME, Misra V (2013) Evaluation of twentieth-century Atlantic Warm Pool simulations in historical CMIP5 runs. Clim Dyn 41:2375–2391CrossRefGoogle Scholar
  35. Leloup J, Clement A (2009) Why is there a minimum in projected warming in the tropical North Atlantic Ocean? Geophys Res Lett 36:L14802. doi:10.1029/2009GL038609 CrossRefGoogle Scholar
  36. Magaña V, Caetano E (2005) Temporal evolution of summer convective activity over the Americas warm pools. Geophys Res Lett 32:L02803. doi:10.1029/2004GL021033 Google Scholar
  37. Magaña V, Amador JA, Medina S (1999) The midsummer drought over Mexico and Central America. J Clim 12(6):1577–1588CrossRefGoogle Scholar
  38. Maloney E, Camargo S, Chang E, Colle B, Fu R, Geil K, Hu Q Jiang X, Johnson N, Karnauskas K, Kinter J, Kirtman B, Kumar S, Langenbrunner B, Lombardo K, Long L, Mariotti A, Meyerson J, Mo K, Neelin D, Pan Z, Seager R, Serra Y, Seth A, Sheffield J, Stroeve J, Thibeault J, Xie S, Wang C, Wyman B, Zhao M (2013) North American Climate in CMIP5 experiments: part III: assessment of 21st century projections. J. Clim. doi:10.1175/JCLI-D-13-00273.1 (in press)
  39. Martinez-Sanchez JN, Cavazos T (2014) Eastern Tropical Pacific hurricane variability and landfalls on Mexican coasts. Clim Res 58:221–234CrossRefGoogle Scholar
  40. Méndez M, Magaña V (2010) Regional aspects of prolonged meteorological droughts over Mexico and Central America. J Clim 23(5):1175–1188CrossRefGoogle Scholar
  41. Mitchell T, Jones D (2005) An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int J Climatol 25:693–712CrossRefGoogle Scholar
  42. Moss RH, Edmonds JA, Hibbard KA, Manning MR, Rose SK, Van Vuuren DP, Wilbanks TJ (2010) The next generation of scenarios for climate change research and assessment. Nature 463(7282):747–756CrossRefGoogle Scholar
  43. Munoz-Arriola F, Lettenmaier DP, Zhu C, Avissar R (2009) Water resources sensitivity of the Rio Yaqui Basin, Mexico to agriculture extensification under multi-scale climate conditions. Water Resour Res 45:W00A20. doi:10.1029/2007WR006783 CrossRefGoogle Scholar
  44. Oleson KW, Niu GY, Yang ZL, Lawrence D et al (2008) Improvements to the community land model and their impact on the hydrological cycle. J Geophys Res 113:G01021. doi:10.1029/2007JG000563 Google Scholar
  45. Pal JS, Small EE, Eltahir EAB (2000) Simulation of regional-scale water and energy budgets: representation of subgrid cloud and precipitation processes within RegCM. J Geophys Res 105(D24):29579–29594CrossRefGoogle Scholar
  46. Pal JS, Giorgi F, Bi X, Elguindi N, Solmon F, Gao X, Francisco R, Zakey A, Winter J, Ashfaq M, Syed F, Bell J, Diffenbaugh N, Karmacharya J, Konare A, Martinez-Castro D, Porfirio da Rocha R, Sloan L, Steiner A (2007) Regional climate modeling for the developing world: the ICTP RegCM3 and RegCNET. Bull Am Meteorol Soc 88:1395–1409CrossRefGoogle Scholar
  47. Peña M, Douglas MW (2002) Characteristics of wet and dry spells over the Pacific side of Central America during the rainy season. J Clim 130:3054–3073Google Scholar
  48. Rauscher SA, Giorgi F, Diffenbaugh NS, Seth A (2008) Extension and intensification of the Meso-American midsummer drought in the twenty century. Clim Dyn 31:551–571. doi:10.1007/s00382-007-0359.1 CrossRefGoogle Scholar
  49. Rauscher SA, Kucharski F, Enfield DB (2011) The role of regional SST warming variations in the drying of Meso-America in future projections. J Clim 24:2003–2016CrossRefGoogle Scholar
  50. Rodwell M, Hoskins BJ (2001) Subtropical anticyclones and summer monsoons. J Clim 14:3192–3211CrossRefGoogle Scholar
  51. Seager R, Harnik N, Kushnir Y, Robinson W, Miller J (2003) Mechanisms of hemispheri- cally symmetric climate variability. J Clim 16:2960–2978CrossRefGoogle Scholar
  52. Seager R et al (2009) Mexican drought: an observational, modeling and tree ring study of variability and climate change. Atmósfera 22:1–31Google Scholar
  53. Seneviratne SI, Corti T, Davin EL, Hirschi M, Jaeger EB, Lehner I, Orlowsky B, Teuling AJ (2010) Investigating soil moisture-climate interactions in a changing climate: a review. Earth Sci Rev 99(3–4):125–161. doi:10.1016/j.earscirev.2010.02.004 CrossRefGoogle Scholar
  54. Small RJO, De Szoeke SP, Xie SP (2007) The Central American midsummer drought: regional aspects and large-scale forcing. J Clim 20(19):4853–4873CrossRefGoogle Scholar
  55. Taylor MA, Enfield DB, Chen AA (2002) Influence of the tropical Atlantic versus the tropical Pacific on Caribbean rainfall. J Geophys Res 107(C9):3127CrossRefGoogle Scholar
  56. Taylor MA, Stephenson TS, Owino A, Chen AA, Campbell JD (2011) Tropical gradient influences on Caribbean rainfall. J Geophys Res 116:D00Q08. doi:10.1029/2010JD015580 Google Scholar
  57. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the 1207 experiment design. Bull Am Meteorol Soc 93:485–498. doi:10.1175/BAMS-D-11-120800094.1 CrossRefGoogle Scholar
  58. Taylor MA, Whyte FS, Stephenson TS, Campbell JD (2013) Why dry? Investigating the future evolution of the Caribbean low level jet to explain projected Caribbean drying. Int J Climatol 33(3):784–792CrossRefGoogle Scholar
  59. Torres-Alavez A, Cavazos T, Turrent C (2014). Land-sea thermal contrast and intensity of the North American Monsoon under climate change conditions. J Clim. doi:10.1175/JCLI-D-13-00557.1
  60. Vecchi GA, Soden BJ (2007) Increased tropical Atlantic wind shear in model projections of global warming. Geophys Res Lett 34:L08702. doi:10.1029/2006GL028905 Google Scholar
  61. Wang C (2007) Variability of the Caribbean low-level jet and its relations to climate. Clim Dyn 29:411–422CrossRefGoogle Scholar
  62. Wang C, Lee SK (2007) Atlantic warm pool, Caribbean low level jet, and their potential impact on Atlantic hurricanes. Geophys Res Lett 34(2):L02703. doi:10.1029/2006GL028579 Google Scholar
  63. Zhu C, Lettenmaier DP (2007) Long-term climate and derived surface hydrology and energy flux data for Mexico: 1925–2004. J Clim 20(9):1936–1946CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Ramón Fuentes-Franco
    • 1
    • 2
  • Erika Coppola
    • 2
  • Filippo Giorgi
    • 2
  • Edgar G. Pavia
    • 1
  • Gulilat Tefera Diro
    • 3
  • Federico Graef
    • 1
  1. 1.CICESEEnsenadaMexico
  2. 2.The Abdus Salam International Centre for Theoretical Physics (ICTP)TriesteItaly
  3. 3.UQAMMontrealCanada

Personalised recommendations