Climate Dynamics

, Volume 44, Issue 9–10, pp 2663–2682 | Cite as

Non-random correlation structures and dimensionality reduction in multivariate climate data

  • Martin Vejmelka
  • Lucie Pokorná
  • Jaroslav Hlinka
  • David Hartman
  • Nikola Jajcay
  • Milan Paluš
Article

Abstract

It is well established that the global climate is a complex phenomenon with dynamics driven by the interaction of a multitude of identifiable but intertwined subsystems. The identification, at some level, of these subsystems is an important step towards understanding climate dynamics. We present a method to determine the number of principal components representing non-random correlation structures in climate data, or components that cannot be generated by a surrogate model of independent stochastic processes replicating the auto-correlation structure of each time series. The purpose of the method is to automatically reduce the dimensionality of large climate datasets into spatially localised components suitable for further interpretation or, for example, for use as nodes in a complex network analysis of large-scale climate dynamics. We apply the method to two 2.5° resolution NCEP/NCAR reanalysis global datasets of monthly means: the sea level pressure (SLP) and the surface air temperature (SAT), and extract 60 components explaining 87 % variance and 68 components explaining 72 % variance, respectively. The obtained components are in agreement with previous results in that they recover many well-known climate modes previously identified using other approaches including regionally constrained principal component analysis. Selected SLP components are discussed in more detail with respect to their correlation with important climate indices and their relationship to other SLP and SAT components. Finally, we consider a subset of the obtained components that have not yet been explicitly identified by other authors but seem plausible in the context of regional climate observations discussed in literature.

Keywords

Climate dynamics Sea level pressure Surface air temperature Principal component analysis Varimax Complex networks Modes of variability 

Supplementary material

382_2014_2244_MOESM1_ESM.zip (5.5 mb)
Supplementary material 1 (ZIP 5616 kb)

References

  1. (AMO) Atlantic Multidecadal Oscillation index. http://esrl.noaa.gov/psd/data/correlation/amon.us.data. Accessed 9/2013
  2. (EA) East Atlantic teleconnection index. ftp://ftp.cpc.ncep.noaa.gov/wd52dg/data/indices/ea_index.tim. Accessed: 9/2013
  3. (NAO-pc) North Atlantic Oscillation index: PC-based, updated regularly. http://climatedataguide.ucar.edu/sites/default/files/cas_data_files/asphilli/nao_pc_monthly_8.txt. Accessed: 9/2013
  4. (NAO-station) North Atlantic Oscillation index: station-based, updated regularly. http://climatedataguide.ucar.edu/sites/default/files/cas_data_files/asphilli/nao_station_monthly_4.txt. Accessed 9/2013
  5. (NINO3.4) Niño 3.4 SST index. http://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/Nino34/. Accessed 9/2013
  6. (NPO) The North Pacific Oscillation index, updated regularly. https://climatedataguide.ucar.edu/sites/default/files/climate_index_files/npindex_monthly_0.txt. Accessed 9/2013
  7. (PDO) Pacific Decadal Oscillation index. http://jisao.washington.edu/pdo/PDO.latest. Accessed 9/2013
  8. (PNA) Pacific/North American index. http://jisao.washington.edu/data/pna/#digital_values. Accessed 9/2013
  9. (PNA-pc) Pacific/North American PC-based index. http://www.cpc.ncep.noaa.gov/products/precip/CWlink/pna/norm.pna.monthly.b5001.current.ascii. Accessed 9/2013
  10. (SAM-obs) Southern Hemisphere Annular Mode index: observation-based. http://www.nerc-bas.ac.uk/public/icd/gjma/newsam.1957.2007.txt. Accessed 9/2013
  11. (SAM-pc) Southern Hemisphere Annular Mode index: PC-based. http://www.lasg.ac.cn/staff/ljp/data-NAM-SAM-NAO/Monthly.SAMI.index.1948-2011.ascii. Accessed 9/2013
  12. (SCAN) Scandinavia teleconnection index. ftp://ftp.cpc.ncep.noaa.gov/wd52dg/data/indices/scand_index.tim. Accessed 9/2013
  13. (SOI) Southern Oscillation Index. http://www.cgd.ucar.edu/cas/catalog/climind/SOI.signal.ascii. Accessed 9/2013
  14. (TNA) Tropical North Atlantic Pattern index. http://www.esrl.noaa.gov/psd/data/correlation/tna.data. Accessed 9/2013
  15. (WPO) West Pacific Oscillation index. ftp://ftp.cpc.ncep.noaa.gov/wd52dg/data/indices/wp_index.tim. Accessed 9/2013
  16. Barnston A, Livezey R (1987) Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon Weather Rev 115:1083–1126CrossRefGoogle Scholar
  17. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B 57(1):289–300Google Scholar
  18. Beranová R, Huth R (2008) Time variations of the effects of circulation variability modes on European temperature and precipitation in winter. Int J Climatol 28(2):139–158CrossRefGoogle Scholar
  19. Boccaletti S, Latora V, Morenod Y, Chavez M, Hwang D (2006) Complex networks: structure and dynamics. Phys Rep 424(4–5):175–300CrossRefGoogle Scholar
  20. Bueh C, Nakamura H (2007) Scandinavian pattern and its climatic impact. Q J R Meteorol Soc 133(629):2117–2131CrossRefGoogle Scholar
  21. Cheng X, Nitsche G, Wallace J (1995) Robustness of low-frequency circulation patterns derived from EOF and rotated EOF analyses. J Clim 8:1709–1713CrossRefGoogle Scholar
  22. Clinet S, Martin S (1992) 700-hPa geopotential height anomalies from a statistical analysis of the French Hemis data set. Int J Climatol 12:229–256CrossRefGoogle Scholar
  23. Deser C, Alexander MA, Xie SP, Phillips AS (2010) Sea surface temperature variability: patterns and mechanisms. Annu Rev Mar Sci 2:115–143CrossRefGoogle Scholar
  24. Dommenget D (2007) Evaluating EOF modes against a stochastic null hypothesis. Clim Dyn 28:517–531CrossRefGoogle Scholar
  25. Dray S (2008) On the number of principal components: a test of dimensionality based on measurements of similarity between matrices. Comput Stat Data Anal 52:2228–2237CrossRefGoogle Scholar
  26. Dyson F (1971) Distribution of eigenvalues for a class of real symmetric matrices. Rev Mex Fís 20:231–237Google Scholar
  27. Enfield DB, Mestas-Nuñez AM, Mayer DA, Cid-Serrano L (1999) How ubiquitous is the dipole relationship in tropical Atlantic sea surface temperatures? J Geophys Res Ocean (1978–2012) 104(C4):7841–7848CrossRefGoogle Scholar
  28. Enfield DB, Mestas-Nuñez AM, Trimble PJ (2001) The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental US. Geophys Res Lett 28(10):2077–2080CrossRefGoogle Scholar
  29. Fountalis I, Bracco A, Dovrolis C (2013) Spatio-temporal network analysis for studying climate patterns. Clim DynGoogle Scholar
  30. Gong D, Wang S (1999) Definition of Antarctic oscillation index. Geophys Res Lett 26(4):459–462CrossRefGoogle Scholar
  31. Hannachi A, Jolliffe I, Stephenson D (2007) Empirical orthogonal functions and related techniques in atmospheric science: a review. Int J Climatol 27(9):1119–1152CrossRefGoogle Scholar
  32. Hasselmann K (1988) PIPs and POPs: the reduction of complex dynamical systems using principal interaction and oscillation patterns. J Geophys Res Atmos 93(D9):11015–11021CrossRefGoogle Scholar
  33. Hatzaki M, Flocas HA, Asimakopoulos DN, Maheras P (2007) The eastern Mediterranean teleconnection pattern: identification and definition. Int J Climatol 27(6):727–737CrossRefGoogle Scholar
  34. Hlinka J, Hartman D, Vejmelka M, Novotná D, Paluš M (2013) Non-linear dependence and teleconnections in climate data: sources, relevance, nonstationarity. Clim Dyn May 2013:1–14Google Scholar
  35. Horel J, Wallace J (1981) Planetary-scale atmospheric phenomena associated with the Southern Oscillation. Mon Weather Rev 109:813–829CrossRefGoogle Scholar
  36. Hotelling H (1933) Analysis of a complex of statistical variables into principal components. J Educ Psychol 24:417–444CrossRefGoogle Scholar
  37. Hurrell J (1995) Decadal trends in the North-Atlantic Oscillation—regional temperatures and precipitation. Science 269(5224):676–679CrossRefGoogle Scholar
  38. Huth R (2006) The effect of various methodological options on the detection of leading modes of sea level pressure variability. Tellus 58A:121–130CrossRefGoogle Scholar
  39. Jacobeit J (2010) Classifications in climate research. Phys Chem Earth 35(9–12):411–421CrossRefGoogle Scholar
  40. Jolliffe IT (1987) Rotation of principal components: some comments. Int J Climatol 7:507–510CrossRefGoogle Scholar
  41. Jolliffe IT (2002) Principal component analysis, 2nd edn. Springer, New YorkGoogle Scholar
  42. Jones PD, Salinger MJ, Mullan AB (1999) Extratropical circulation indices in the Southern Hemisphere based on station data. Int J Climatol 19(12):1301–1317CrossRefGoogle Scholar
  43. Kaiser HF (1958) The Varimax criterion for analytic rotation in factor analysis. Psychometrika 23(3):187–200Google Scholar
  44. Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo K, Ropelewski C, Wang J, Leetmaa A, Reynolds R, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77(3):437–471CrossRefGoogle Scholar
  45. Kidson JW (1975) Tropical eigenvector analysis and the Southern Oscillation. Mon Weather Rev 103(3):187–196CrossRefGoogle Scholar
  46. Kimoto M (2005) Simulated change of the East Asian circulation under global warming scenario. Geophys Res Lett 32(16):L16701Google Scholar
  47. Kistler R, Kalnay E, Collins W, Saha S, White G, Woollen J, Chelliah M, Ebisuzaki W, Kanamitsu M, Kousky V, van den Dool H, Jenne R, Fiorino M (2001) The NCEP-NCAR 50-year reanalysis: monthly means CD-ROM and documentation. Bull Am Meteorol Soc 82:247–268CrossRefGoogle Scholar
  48. Kutzbach J (1967) Empirical eigenvectors of sea-Level pressure, surface temperature and precipitation complexes over North America. J Appl Meteorol 6:891–802CrossRefGoogle Scholar
  49. Kutzbach J (1970) Large-scale features of monthly mean northern hemisphere anomaly maps of sea-level pressure. Mon Weather Rev 98(9):708–716CrossRefGoogle Scholar
  50. Laloux L, Cizeau P, Bouchaud JP, Potters M (1999) Noise dressing of financial correlation matrices. Phys Rev Lett 83:1467–1470CrossRefGoogle Scholar
  51. Lau K, Sheu P, Kang IS (1994) Multiscale low-frequency circulation modes in the global atmosphere. J Atmos Sci 51(9):1169–1193CrossRefGoogle Scholar
  52. Leathers DJ, Yarnal B, Palecki MA (1991) The Pacific/North American teleconnection pattern and United States climate. Part I: regional temperature and precipitation associations. J Clim 4(5):517–528CrossRefGoogle Scholar
  53. Mantua N, Hare S, Zhang Y, Wallace J, Francis R (1997) A Pacific interdecadal climate oscillation with impacts on salmon production. Bull Am Meteorol Soc 78(6):1069–1079CrossRefGoogle Scholar
  54. Marshall G (2003) Trends in the southern annular mode from observations and reanalyses. J Clim 16(24):4134–4143CrossRefGoogle Scholar
  55. Marshall GJ (2007) Half-century seasonal relationships between the southern annular mode and Antarctic temperatures. Int J Climatol 27(3):373–383CrossRefGoogle Scholar
  56. Miller R (1981) Simultaneous statistical inference. Springer, BerlinCrossRefGoogle Scholar
  57. Mo KC (2000) Relationships between low-frequency variability in the Southern Hemisphere and sea surface temperature anomalies. J Clim 13(20):3599–3610CrossRefGoogle Scholar
  58. Mo KC, Higgins RW (1998) The Pacific-South American modes and tropical convection during the Southern Hemisphere winter. Mon Weather Rev 126:1581–1596CrossRefGoogle Scholar
  59. Müller M, Baier G, Galka A, Stephani U, Muhle H (2005) Detection and characterization of changes of the correlation structure in multivariate time series. Phys Rev E 71(046):116Google Scholar
  60. O’Lenic E, Livezey R (1988) Practical considerations in the use of rotated principal component analysis (RPCA) in diagnostic studies of upper-air height fields. Mon Weather Rev 116:1682–1689CrossRefGoogle Scholar
  61. Osborn T, Briffa K, Tett S, Jones P, Trigo R (1999) Evaluation of the North Atlantic Oscillation as simulated by a coupled climate model. Clim Dyn 15(9):685–702CrossRefGoogle Scholar
  62. Paluš M, Hartman D, Hlinka J, Vejmelka M (2011) Discerning connectivity from dynamics in climate networks. Nonlinear Process Geophys 18(5):751–763CrossRefGoogle Scholar
  63. Pittock AB (1984) On the reality, stability and usefulness of Southern Hemisphere teleconnections. Aust Meteorol Mag 32(2):75–82Google Scholar
  64. Plerou V, Gopikrishnan P, Rosenow B, Amaral LN, Stanley HE (1999) Universal and nonuniversal properties of cross correlations in financial time series. Phys Rev Letters 83:1471–1474CrossRefGoogle Scholar
  65. Rayner N, Parker D, Horton E, Folland C, Alexander L, Rowell D, Kent E, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res Atmos 108(D14):4407Google Scholar
  66. Richman M (1986) Rotation of principal components. Int J Climatol 6:293–335CrossRefGoogle Scholar
  67. Richman M (1987) Rotation of principal components: a reply. Int J Climatol 7:511–520CrossRefGoogle Scholar
  68. Rogers J (1990) Patterns of low-frequency monthly sea level pressure variability (1899–1986) and associated wave cyclone frequencies. J Clim 3:1364–1379CrossRefGoogle Scholar
  69. Rogers JC, van Loon H (1982) Spatial variability of sea level pressure and 500 mb height anomalies over the Southern Hemisphere. Mon Weather Rev 110(10):1375–1392CrossRefGoogle Scholar
  70. Sáenz J, Zubillaga J, Rodríguez-Puebla C (2001) Interannual winter temperature variability in the north of the Iberian Peninsula. Clim Res 16(3):169–179CrossRefGoogle Scholar
  71. Schlesinger M, Ramankutty N (1994) An Oscillation in the global climate system of period 65–70 years. Nature 367(6465):723–726CrossRefGoogle Scholar
  72. Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6(2):461–464CrossRefGoogle Scholar
  73. Sengupta A, Mitra P (1999) Distributions of singular values for some random matrices. Phys Rev E 60:3389–3392CrossRefGoogle Scholar
  74. Slonosky VC, Jones PD, Davies TD (2001) Instrumental pressure observations and atmospheric circulation from the 17th and 18th centuries: London and Paris. Int J Climatol 21:285–298CrossRefGoogle Scholar
  75. Steinhaeuser K, Tsonis A (2013) A climate model intercomparison at the dynamics level. Clim Dyn 1–6. doi:10.1007/s00382-013-1761-5
  76. Steinhaeuser K, Ganguly A, Chawla N (2011) Multivariate and multiscale dependence in the global climate system revealed through complex networks. Clim Dyn 39:889–895CrossRefGoogle Scholar
  77. Trenberth K (1997) The definition of El Niňo. Bull Am Meteorol Soc 78(12):2771–2777CrossRefGoogle Scholar
  78. Tsonis A, Roebber P (2004) The architecture of the climate network. Phys A 333:497–504CrossRefGoogle Scholar
  79. Tsonis A, Swanson K, Roebber P (2006) What do networks have to do with climate? Bull Am Meteorol Soc 87:585CrossRefGoogle Scholar
  80. Vejmelka M, Paluš M (2010) Partitioning networks into clusters and residuals with average association. Chaos 20(033):103Google Scholar
  81. Walker G, Bliss E (1932) World Weather. V Mem R Meteorol Soc 4(36):53–84Google Scholar
  82. Wallace J, Gutzler D (1981) Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon Weather Rev 109:784–812CrossRefGoogle Scholar
  83. Wang C, Kucharski F, Barimalala R, Bracco A (2009) Teleconnections of the tropical Atlantic to the tropical Indian and Pacific Oceans: a review of recent findings. Meteorol Z 18(4):445–454CrossRefGoogle Scholar
  84. Werner PC, von Storch H (1993) Interannual variability of Central European mean temperature in January/February and its relation to large-scale circulation. Clim Res 3:195–207CrossRefGoogle Scholar
  85. Wu B, Zhang R, D’Arrigo R (2006) Distinct modes of the East Asian winter monsoon. Mon Weather Rev 134(8):2165–2179CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Martin Vejmelka
    • 1
  • Lucie Pokorná
    • 1
    • 2
  • Jaroslav Hlinka
    • 1
  • David Hartman
    • 1
  • Nikola Jajcay
    • 1
  • Milan Paluš
    • 1
  1. 1.Institute of Computer ScienceAcademy of Sciences of the Czech RepublicPrague 8Czech Republic
  2. 2.Department of Climatology, Institute of Atmospheric PhysicsAcademy of Sciences of the Czech RepublicPrague 4Czech Republic

Personalised recommendations