Climate Dynamics

, Volume 44, Issue 3–4, pp 807–825 | Cite as

State of the tropical Pacific Ocean and its enhanced impact on precipitation over East Asia during marine isotopic stage 13

  • M. P. KaramiEmail author
  • N. Herold
  • A. Berger
  • Q. Z. Yin
  • H. Muri


Multiple terrestrial records suggest that marine isotopic stage 13 (MIS-13), an interglacial period approximately 0.5 million years ago, had the strongest East Asian summer monsoon (EASM) of the last one million years. This is unexpected given that, compared to other interglacials, MIS-13 was globally cooler with a lower CO2 concentration. We use two coupled atmosphere–ocean general circulation models, the Hadley Centre Coupled Model, version 3 (HadCM3) and Community Climate System Model, version 3.0 (CCSM3), to simulate the climate of MIS-13 forced with different insolation and greenhouse gas concentrations relative to the pre-industrial (PrI) situation. Both models confirm a stronger EASM during MIS-13 compared to PrI. Here we specially focus on analyzing the impact of the tropical Pacific Ocean on the EASM. Our simulations suggest that the mean climatic state in the tropical Pacific during MIS-13 was La Niña-like and that associated teleconnections with the extra-tropics favored increased precipitation over the EASM. As compared to PrI, it is found that the summer (June–July–August) sea surface temperature (SST) is warmer in the eastern tropical Pacific Ocean and colder to the west. In concert with previous studies, we show that colder summer SSTs in the central tropical Pacific during MIS-13 promotes an upper-level teleconnection between the tropical Pacific Ocean and EASM. It also contributes to the strengthening of the northern Pacific subtropical high and, therefore, the transport of more moisture into the EASM. We suggest that the reduced east–west SST difference in the tropical Pacific in summer helps to maintain the teleconnection between the tropical Pacific and EASM. The correlation between tropical Pacific SSTs and the EASM was higher in our MIS-13 simulations, further supporting the enhancement of their relationship. It is found that the pure impact of El Niño Southern Oscillation on EASM precipitation increases by up to 30 % in MIS-13 for HadCM3 while it is minor for CCSM3. Better constraining the spatio-temporal variability of tropical Pacific SST during the interglacials may thus help explain the anomalously strong EASM during MIS-13 which has been observed from geological records.


Paleoclimate modeling MIS-13 ENSO Teleconnection East Asian summer monsoon 



This work and M. P. Karami were supported by the European Research Council Advanced Grant EMIS (No 227348 of the Programme ‘Ideas’). Q. Z. Yin is supported by the Belgian National Fund for Scientific Research (F.R.S.-FNRS). H. Muri is supported by the Research Council of Norway (Grant agreement 229760). We are grateful to the reviewers for their constructive comments and suggestions. We thank Dr. Fred Kucharski, Dr. Carlos Almeida, Gauillame Lenoir and Dr. Tobias Bayr for helpful discussions. Access to computer facilities was facilitated through sponsorship from S. A. Electrabel, Belgium. We are also grateful to CISM staff at Université catholique de Louvain for their technical support.


  1. Alexander MA, Bladé I, Newman M, Lanzante JR, Lau NC, Scott JD (2002) The atmospheric bridge: the influence of ENSO teleconnections on air-sea interaction over the global oceans. J Clim 15:2205–2231. doi: 10.1175/1520-0442(2002)015<2205:TABTIO>2.0.CO;2 CrossRefGoogle Scholar
  2. Ashok K, Behera SK, Rao SA, Weng H, Yamagata T (2007) El Niño Modoki and its possible teleconnection. J Geophys Res 112:C11007. doi: 10.1029/2006JC003798 CrossRefGoogle Scholar
  3. Bassinot FC, Labeyrie LD, Vincent E, Quidelleur X, Shackleton NJ, Lancelot Y (1994) The astronomical theory of climate and the age of the Brunhes-Matuyama magnetic reversal. Earth Planet Sci Lett 126:91–108CrossRefGoogle Scholar
  4. Berger A (1978) Long-term variations of daily insolation and quaternary climatic changes. J Atmos Sci 35(12):2362–2367CrossRefGoogle Scholar
  5. Chang CP, Zhang YS, Li T (2000) Interannual and interdecadal variations of the East Asian summer monsoon and tropical Pacific SSTs. Part I: roles of the subtropical ridge. J Clim 13:4310–4325. doi: 10.1175/1520-0442(2000)013<4310:IAIVOT>2.0.CO;2 CrossRefGoogle Scholar
  6. Chiang JCH (2009) The tropics in paleoclimate. Annu Rev Earth Planet Sci 37:263–297. doi: 10.1146/ CrossRefGoogle Scholar
  7. Clement AC, Seager R, Cane MA, Zebiak SE (1996) An ocean dynamical thermostat. J Clim 9:2190–2196. doi: 10.1175/1520-0442(1996)009<2190:AODT>2.0.CO;2 CrossRefGoogle Scholar
  8. Clement AC, Seager R, Cane MA (1999) Orbital controls on the El Niño/Southern oscillation and the tropical climate. Paleoceanography 14(4):441–456. doi: 10.1029/1999PA900013 CrossRefGoogle Scholar
  9. Collins M, Tett SFB, Cooper C (2001) The internal climate variability of HadCM3, a version of the Hadley centre coupled model without flux adjustments. Clim Dyn 17:61–81CrossRefGoogle Scholar
  10. Collins WD, Bitz CM, Blackmon ML, Bonan GB, Bretherton CS, Carton JA, Chang P, Doney SC, Hack JJ, Henderson TB, Kiehl JT, Large WG DS, McKenna SB, Smith RD (2006) The community climate system model version 3 (CCSM3). J Clim 19:2122–2143. doi: 10.1175/JCLI3761.1 CrossRefGoogle Scholar
  11. De Weaver E, Nigam S (2004) On the forcing of ENSO teleconnections by anomalous heating and cooling. J Clim 17:3225–3235. doi: 10.1175/1520-0442(2004)017<3225:OTFOET>2.0.CO;2 CrossRefGoogle Scholar
  12. Deser C, Capotondi A, Saravanan R, Phillips AS (2006) Tropical pacific and Atlantic climate variability in ccsm3. J. Clim 19:2451–2481. doi: 10.1175/JCLI3759.1 CrossRefGoogle Scholar
  13. Douglas DH (2011) Separation of a signal of interest from a seasonal effect in geophysical data: el Niño/La Niña phenomenon. Int J Geosci 2:414–419. doi: 10.4236/ijg.2011.24045 CrossRefGoogle Scholar
  14. Fan L, Shin SI, Liu Q, Liu Z (2013) Relative importance of tropical SST anomalies in forcing East Asian summer monsoon circulation. Geophys Res Lett 40:2471–2477. doi: 10.1002/grl.50494 CrossRefGoogle Scholar
  15. Gill AE (1980) Some simple solutions for heat-induced tropical circulation. QJR Meteorol Soc 106:447–462. doi: 10.1002/qj.49710644905 CrossRefGoogle Scholar
  16. Gordon C, Cooper C, Senior CA, Banks H, Gregory JM, Johns TC et al (2000) The simulation of SST, sea ice extent and ocean heat transport in a version of the Hadley Centre coupled model without flux adjustment. Clim Dyn 147–168Google Scholar
  17. Guo ZT, Liu TS, Fedoroff N, Wei LY, Ding ZL, Wu NQ, Lü HY, Jiang WY, An ZS (1998) Climate extremes in loess of China coupled with the strength of deep-water formation in the North Atlantic. Global Planet Change 18:113–128CrossRefGoogle Scholar
  18. Guo ZT, Berger A, Yin QZ, Qin L (2009) Strong asymmetry of hemispheric climates during MIS-13 inferred from correlating China loess and Antarctica ice records. Clim Past 5:21–31CrossRefGoogle Scholar
  19. Herold N, Yin QZ, Karami MP, Berger A (2012) Modelling the climatic diversity of the warm interglacials. Quaternary Science Review 56:126–141. doi: 10.1016/j.quascirev.2012.08.020 CrossRefGoogle Scholar
  20. Hoskins BJ, Karoly DJ (1981) The steady linear response of a spherical atmosphere to thermal and orographic forcing. J Atmos Sci 38:1179–1196CrossRefGoogle Scholar
  21. Jouzel J, Masson-Delmotte V, Cattani O, Dreyfus G, Falourd S, Hoffmann G, Minster B, Nouet J, Barnola JM, Chappellaz J, Fischer H, Gallet JC, Johnsen S, Leuenberger M, Loulergue L, Luethi D, Oerter H, Parrenin F, Raisbeck G, Raynaud D, Schilt A, Schwander J, Selmo E, Souchez R, Spahni R, Stauffer B, Steffensen JP, Stenni B, Stocker TF, Tison JL, Werner M, Wolff EW (2007) Orbital and millennial antarctic climate variability over the past 800,000 years. Science 317:793–796. doi: 10.1126/science.1141038 CrossRefGoogle Scholar
  22. Kukla G, An ZS, Melice JL, Gavin J, Xiao JL (1990) Magnetic susceptibility record of Chinese loess. Trans R Soc Edinb Earth Sci 81:263–288CrossRefGoogle Scholar
  23. Lee E, Chase TN, Rajagopalan B (2008) Seasonal forecasting of East Asian summer monsoon based on oceanic heat sources. Int J Climatol 28:667–678. doi: 10.1002/joc.1551 CrossRefGoogle Scholar
  24. Lei Y, Hoskins B, Slingo J (2013) Natural variability of summer rainfall over China in HadCM3. Clim Dyn. doi: 10.1007/s00382-013-1726-8
  25. Li T, Philander SGH (1996) On the annual cycle of the eastern equatorial pacific. J Clim 9:2986–2998. doi: 10.1175/15200442(1996)009<2986:OTACOT>2.0.CO;2 CrossRefGoogle Scholar
  26. Lisiecki LE, Raymo ME (2005) A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20: PA1003. doi: 10.1029/2004PA001071
  27. Lunt D, Abe-Ouchi A, Bakker P, Berger A, Braconnot P, Charbit S, Fischer N, Herold N, Jungclaus J, Kohn V, Krebs-Kanzow U, Lohmann G, Otto-Bliesner B, Park W, Pfeiffer M, Prange M, Rachmayani R, Renssen H, Rosenbloom N, Schneider B, Stone E, Takahashi K, Wei W, Yin Q (2013) A multi-model assessment of last interglacial temperatures. Clim Past, COPERNICUS GESELLSCHAFT MBH 9:699–717. doi: 10.5194/cp-9-699-2013 CrossRefGoogle Scholar
  28. Lüthi D, Le Floch M, Bereiter B, Blunier T, Barnola JM, Siegenthaler U, Raynaud D, Jouzel J, Fischer H, Kawamura K, Stocker TF (2008) High-resolution carbon dioxide concentration record 650,000–800,000 years before present. Nature 453:379–382. doi: 10.1038/nature06949 CrossRefGoogle Scholar
  29. Meehl GA, Arblaster JM, Lawrence DM, Seth A, Schneider EK, Kirtman BP, Min D (2006) Monsoon regimes in the CCSM3. J Clim 19:2482–2495. doi: 10.1175/JCLI3745.1 CrossRefGoogle Scholar
  30. Merkel U, Prange M, Schultz M (2010) ENSO variability and teleconnections during glacial climates. Quatern Sci Rev 29:86–100. doi: 10.1016/j.quascirev.2009.11.006 CrossRefGoogle Scholar
  31. Mohtadi M, Hebbeln D, Ricardo SN, Lange CB (2006) El Nino-like pattern in the Pacific during marine isotope stages (MIS) 13 and 11? Paleoceanography 21: PA1015. doi: 10.1029/2005PA001190
  32. Müller W, Roeckner E (2008) ENSO teleconnections in projections of future climate in ECHAM5/MPI-OM. Clim Dyn 31:533–549. doi: 10.1007/s00382-007-0357-3 CrossRefGoogle Scholar
  33. Muri H, Berger A, Yin QZ, Voldoire A, Salas D, Sundaram S (2012) SST and ice sheet impacts on the MIS–13 climate. Clim Dyn 39:1739–1761. doi: 10.1007/s00382-011-1216-9 CrossRefGoogle Scholar
  34. Muri H, Berger A, Yin QZ, Karami MP, Barriat PY (2013) The climate of the MIS-13 interglacial according to HadCM3. J Climate 26:9696–9712. doi: 10.1175/JCLI-D-12-00520.1 CrossRefGoogle Scholar
  35. Myhre G, Highwood EJ, Shine KP, Stordal F (1998) New estimates of radiative forcing due to well mixed greenhouse gases. Geophys Res Lett 25:2715–2718CrossRefGoogle Scholar
  36. Pope VD, Gallani ML, Rowntree PR, Stratton RA (2000) The impact of new physical parametrizations in the Hadley Centre climate model - HadAM3. Clim Dyn, 123–146Google Scholar
  37. Ropelewski CF, Halpert MS (1987) Global and regional scale precipitation patterns associated with the El Nino/Southern Oscillation. Mon Wea Rev 115:1606–1626CrossRefGoogle Scholar
  38. Rossignol-Strick M, Paterne M, Bassinot FC, Emeis KC, de Lange GJ (1998) An unusual mid-Pleistocene monsoon period over Africa and Asia. Nature 392:269–272CrossRefGoogle Scholar
  39. Seager R, Naik N, Ting M, Cane MA, Harnik N, Kushnir Y (2010) Adjustment of the atmospheric circulation to tropical Pacific SST anomalies: variability of transient eddy propagation in the Pacific-North America sector. Q J R Meteorol Soc 136:277–296. doi: 10.1002/qj.588 Google Scholar
  40. Shen SH, Lau KM (1995) Biennial oscillation associated with the East Asian summer monsoon and tropical sea surface temperature. J Meteor Soc Japan 73:105–124Google Scholar
  41. Sundaram S, Yin QZ, Berger A, Muri H (2012) Ice sheet induced North Atlantic oscillation mode during an interglacial 500,000 years ago and its impact on East Asian summer monsoon. Clim Dyn 39:1093–1105. doi: 10.1007/s00382-011-1213-z CrossRefGoogle Scholar
  42. Thuburn J, Sutton RT (2000) The seasonal cycle of tropical Pacific sea surface temperature in a coupled GCM. Clim Dyn 16(12):935–947CrossRefGoogle Scholar
  43. Timmermann A, An SI, Krebs U, Goosse H (2005) Enso suppression due to 30 weakening of the north Atlantic thermohaline circulation. J Clim 18:3122–3139. doi: 10.1175/JCLI3495.1 CrossRefGoogle Scholar
  44. Trenberth KE, Branstator GW, Karoly D, Kumar A, Lau NC, Ropelewski C (1998) Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J Geophys Res 103(C7):14291–14324. doi: 10.1029/97JC01444 CrossRefGoogle Scholar
  45. Turner AG, Slingo JM (2009) Subseasonal extremes of precipitation and active-break cycles of the Indian summer monsoon in a climate-change scenario. QJR Meteorol Soc 135:549–567. doi: 10.1002/qj.401 CrossRefGoogle Scholar
  46. Wang B, Wu R, Fu X (2000) Pacific-East Asian teleconnection: how does ENSO affect East Asian climate? J Clim 13:1517–1536. doi: 10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2 CrossRefGoogle Scholar
  47. Wu R, Wang B (2002) A contrast of the East Asian summer monsoon–ENSO relationship between 1962–1977 and 1978–1993. J Clim 15:3266–3279. doi: 10.1175/1520-0442(2002)015<3266:ACOTEA>2.0.CO;2 CrossRefGoogle Scholar
  48. Wu Z, Li J, Jiang Z, He J, Zhu X (2012) Possible effects of the North Atlantic oscillation on the strengthening relationship between the East Asian summer monsoon and ENSO. Int J Climatol 32:794–800. doi: 10.1002/joc.2309 CrossRefGoogle Scholar
  49. Yeager SG, Shields CA, Large WG, Hack JJ (2006) The low-resolution CCSM3. J Clim 19:2545–2566. doi: 10.1175/JCLI3744.1 CrossRefGoogle Scholar
  50. Yin JH, Battisti DS (2001) The Importance of tropical sea surface temperature patterns in simulations of last glacial maximum climate. J Clim 14:565–581. doi: 10.1175/1520-0442(2001)014<0565:TIOTSS>2.0.CO;2 CrossRefGoogle Scholar
  51. Yin QZ, Berger A (2012) Individual contribution of insolation and CO2 to the the interglacial climates of the past 800,000 years. Clim Dyn 38:709–724. doi: 10.1007/s00382-011-1013-5 CrossRefGoogle Scholar
  52. Yin QZ, Guo ZT (2006) Mid-Pleistocene vermiculated red soils in southern China as an indication of unusually strengthened East Asian monsoon. Chin Sci Bull 51(2):213–220CrossRefGoogle Scholar
  53. Yin QZ, Guo ZT (2008) Strong summer monsoon during the cool MIS-13. Clim Past 4:29–34CrossRefGoogle Scholar
  54. Yin QZ, Berger A, Driesschaert E, Goosse H, Loutre MF, Crucifix M (2008) The Eurasian ice sheet reinforces the East Asian summer monsoon during the interglacial 500,000 years ago. Clim Past 4: 79–90.
  55. Yu PS, Chen MT (2011) A prolonged warm and humid interval during marine isotope stage 13–15 as revealed by hydrographic reconstructions from the South China Sea (IMAGES MD972142). J Asian Earth Sci 40(6):1230–1237CrossRefGoogle Scholar
  56. Yuan Y, Yan HM (2013) Different types of La Niña events and different responses of the tropical atmosphere. Chin Sci Bull 58:406–415. doi: 10.1007/s11434-012-5423-5 CrossRefGoogle Scholar
  57. Zhou T, Yu R, Zhang J, Drange H, Cassou C, Deser C, Hodson D, Sanchez-Gomez E, Li J, Keenlyside N, Xin X, Okumura Y (2008) Why the Western Pacific subtropical high has extended westward since the late 1970s. J Clim 22:2199–2215. doi: 10.1175/2008JCLI2527.1 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • M. P. Karami
    • 1
    • 2
    Email author
  • N. Herold
    • 1
    • 3
  • A. Berger
    • 1
  • Q. Z. Yin
    • 1
  • H. Muri
    • 1
    • 4
  1. 1.Georges Lemaître Centre for Earth and Climate Research (TECLIM), Earth and Life Institute (ELI)Université Catholique de LouvainLouvain-La-NeuveBelgium
  2. 2.GeotopUniversité du Québec à Montréal (UQAM)MontrealCanada
  3. 3.Institute for the Study of Earth, Oceans and SpaceUniversity of New HampshireDurhamUSA
  4. 4.Department of Geosciences, Meteorology and Oceanography SectionUniversity of OsloOsloNorway

Personalised recommendations