Skip to main content

Advertisement

Log in

Dynamical and temporal characterization of the total ozone column over Spain

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

As the ozone is one of the most relevant variables in the climate system, to get further in its long-term characterization is a critical issue. In this study, measurements of total ozone column (TOC) from five well-calibrated Brewer spectrophotometers placed in the Iberian Peninsula are analyzed. The temporal trend rate for TOC is +9.3 DU per decade for the period 1993–2012 in Central Iberian Peninsula. However, the low TOC levels during 2011 and 2012 over the study region notably reduce this rate. Empirical linear relationships are established between TOC and pressure, height, and temperature of the tropopause. The linear fits showed seasonal and latitudinal dependence, with stronger relationships during winter and spring. Events with the presence of a double tropopause (DT) are proved to be characteristic of the study region. The decrease in TOC levels when these anomalous events occur is quantified around 10 % in winter and spring with respect to the usual cases with a single tropopause. The total weight of the DT events with respect to the annual values is about 20 %, with a negligible occurrence in summer and autumn and being latitudinal-dependent. The North Atlantic Oscillation (NAO) index explains 30 % of the total ozone variability in winter. The DT events are found to be more frequent during phases with positive NAO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ambaum MHP, Hoskins BJ (2002) The NAO troposphere–stratosphere connection. J Clim 15:1969–1978

    Article  Google Scholar 

  • Antón M, Mateos D (2013) Shortwave radiative forcing due to long-term changes of total ozone column over the Iberian Peninsula. Atmos Environ 81:532–537. doi:10.1016/j.atmosenv.2013.09.047

    Article  Google Scholar 

  • Antón M, López M, Serrano A, Bañón M, García JA (2010) Diurnal variability of total ozone column over Madrid (Spain). Atmos Environ 44:2793–2798. doi:10.1016/j.atmosenv.2010.05.004

    Article  Google Scholar 

  • Antón M, Bortoli D, Costa MJ, Kulkarni PS, Domingues AF, Barriopedro D, Serrano A, Silva AM (2011a) Temporal and spatial variabilities of total ozone column over Portugal. Remote Sens Environ 115:855–863. doi:10.1016/j.rse.2010.11.013

    Article  Google Scholar 

  • Antón M, Bortoli D, Kulkarni PS, Costa MJ, Domingues AF, Loyola D, Silva AM, Alados-Arboledas L (2011b) Long-term trends of total ozone column over the Iberian Peninsula for the period 1979–2008. Atmos Environ 45:6283–6290. doi:10.1016/j.atmosenv.2011.08.058

    Article  Google Scholar 

  • Appenzeller C, Weiss AK, Staehelin J (2000) North Atlantic Oscillation modulates total ozone winter trends. Geophys Res Lett 27(8):1131–1134. doi:10.1029/1999GL010854

    Article  Google Scholar 

  • Arnone E, Castelli E, Papandrea E, Carlotti M, Dinelli BM (2012) Extreme ozone depletion in the 2010–2011 Arctic winter stratosphere as observed by MIPAS/ENVISAT using a 2-D tomographic approach. Atmos Chem Phys 12:9149–9165. doi:10.5194/acp-12-9149-2012

    Article  Google Scholar 

  • Bais AF et al (2007) Surface ultraviolet radiation: past, present, and future, Chapter 7. In: Scientific assessment of ozone depletion: 2006. Global Ozone Research and Monitoring Project, Report No 50, World Meteorological Organization, Geneva, Switzerland

  • Baldwin MP, Gray LJ, Dunkerton TJ et al (2001) The quasi-biennial oscillation. Rev Geophys 39:179–229

    Article  Google Scholar 

  • Barriopedro D, Antón M, García JA (2010) Atmospheric blocking signatures in total ozone and ozone miniholes. J Clim 23:3967–3983. doi:10.1175/2010JCLI3508.1

    Article  Google Scholar 

  • Blessing S, Fraedrich K, Junge M, Kunz T, Lunkeit F (2005) Daily North-Atlantic Oscillation (NAO) index: statistics and its stratospheric polar vortex dependence. Meteorologische Zeitschrift Band 14 Heft 6:763–769. doi:10.1127/0941-2948/2005/0085

    Article  Google Scholar 

  • Brönnimann S, Luterbacher J, Staehelin J et al (2004) Extreme climate of the global troposphere and stratosphere in 1940–42 related to El Nino. Nature 431:971–974

    Article  Google Scholar 

  • Castanheira JM, Peevey TR, Marques CAF, Olsen MA (2012) Relationships between Brewer–Dobson circulation, double tropopauses, ozone and stratospheric water vapour. Atmos Chem Phys 12:10195–10208. doi:10.5194/acp-12-10195-2012

    Article  Google Scholar 

  • de Miguel A, Roman R, Bilbao J, Mateos D (2011) Evolution of erythemal and total shortwave solar radiation in Valladolid, Spain: effects of atmospheric factors. J Atmos Sol-Terr Phys 73:578–586. doi:10.1016/j.jastp.2010.11.021

    Article  Google Scholar 

  • Dee DP, Uppala SM, Simmons AJ et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597. doi:10.1002/qj.828

    Article  Google Scholar 

  • Fioletov VE, Kerr JB, McElroy CT, Wardle DI, Savastiouk V, Grajnar TS (2005) The Brewer reference triad. Geophys Res Lett 32:L20805. doi:10.1029/2005GL024244

    Article  Google Scholar 

  • Fortuin JPF, Kelder H (1996) Possible links between ozone and temperature profiles. Geophys Res Lett 23:1517–1520

    Article  Google Scholar 

  • Frossard L, Ribatet M, Staehelin J et al (2013) On the relationship between total ozone and atmospheric dynamics and chemistry at mid-latitudes—part 2: the effects of the El Niño/Southern Oscillation, volcanic eruptions and contributions of atmospheric dynamics and chemistry to long-term total ozone changes. Atmos Chem Phys 13:165–179. doi:10.5194/acp-13-165-2013

    Article  Google Scholar 

  • Gallego MC, García JA, Vaquero JM (2005) The NAO signal in daily rainfall series over the Iberian Peninsula. Clim Res 29:103–109

    Article  Google Scholar 

  • Harris NRP, Kyrö E, Staehelin J et al (2008) Ozone trends at northern mid- and high latitudes—a European perspective. Ann Geophys 26:1207–1220. doi:10.5194/angeo-26-1207-2008

    Article  Google Scholar 

  • Hoinka KP, Claude H, Köhler U (1996) On the correlation between tropopause pressure and ozone above Central Europe. Geophys Res Lett 23:1753–1756

    Article  Google Scholar 

  • Hood LL, Soukharev BE (2005) Interannual variations of total ozone at northern midlatitudes correlated with stratospheric EP flux and potential vorticity. J Atmos Sci 62:3724–3740

    Article  Google Scholar 

  • Hu YY, Xia Y (2013) Extremely cold and persistent stratospheric Arctic vortex in the winter of 2010–2011. Chin Sci Bull 58:3155–3160. doi:10.1007/s11434-013-5945-5

    Article  Google Scholar 

  • Iqbal M (1983) An introduction to solar radiation. Academic Press, London

    Google Scholar 

  • Johansson Å (2007) Prediction skill of the NAO and PNA from daily to seasonal time scales. J Clim 20:1957–1975. doi:10.1175/JCLI4072.1

    Article  Google Scholar 

  • Koch G, Wernli H, Schwierz C, Staehelin J, Peter T (2005) A composite study on the structure and formation of ozone miniholes and minihighs over central Europe. Geophys Res Lett 32:L12810. doi:10.1029/2004GL022062

    Article  Google Scholar 

  • Krzyscin JW (2012) Extreme ozone loss over the Northern Hemisphere high latitudes in the early 2011. Tellus B 64:17347. doi:10.3402/tellusb.v64i0.17347

    Article  Google Scholar 

  • Krzyszin JW, Degórska M, Rajewska-Więch B (1998) Seasonal acceleration of the rate of total ozone decreases over Central Europe: impact of tropopause height changes. J Atmos Sol-Terr Phys 60:1755–1762

    Article  Google Scholar 

  • Manney GL, Santee ML, Rex M et al (2011) Unprecedented Arctic ozone loss in 2011. Nature 478:469–475. doi:10.1038/nature10556

    Article  Google Scholar 

  • Mateos D, Antón M, Sanchez-Lorenzo A, Calbó J, Wild M (2013) Long-term changes in the radiative effects of aerosols and clouds in a mid-latitude region (1985–2010). Global Planet Change 111:288–295. doi:10.1016/j.gloplacha.2013.10.004

    Article  Google Scholar 

  • Orsolini YJ, Doblas-Reyes FJ (2003) Ozone signatures of climate patterns over the Euro-Atlantic sector in the spring. Q J R Meteorol Soc 129:3251–3263

    Article  Google Scholar 

  • Orsolini YJ, Limpasuvan V (2001) The North Atlantic Oscillation and the occurrences of ozone miniholes. Geophys Res Lett 28:4099–4102

    Article  Google Scholar 

  • Ossó A, Sola Y, Bech J, Lorente J (2011) Evidence for the influence of the North Atlantic Oscillation on the total ozone column at northern low latitudes and midlatitudes during winter and summer seasons. J Geophys Res 116:D24122. doi:10.1029/2011JD016539

    Article  Google Scholar 

  • Palancar GG, Toselli BM (2004) Effects of meteorology and tropospheric aerosols on UV-B radiation: a 4-year study. Atmos Environ 38:2749–2757

    Article  Google Scholar 

  • Pan LL, Randel WJ, Gille JC, Hall WD, Nardi B, Massie S, Yudin V, Khosravi R, Konopka P, Tarasick D (2009) Tropospheric intrusions associated with the secondary tropopause. J Geophys Res 114:D10302. doi:10.1029/2008JD011374

    Article  Google Scholar 

  • Peevey TR, Gille JC, Randall CE, Kunz A (2012) Investigation of double tropopause spatial and temporal global variability utilizing High Resolution Dynamics Limb Sounder temperature observations. J Geophys Res 117:D01105. doi:10.1029/2011JD016443

    Article  Google Scholar 

  • Pommereau JP, Goutail F, Lefèvre F et al (2013) Why unprecedented ozone loss in the Arctic in 2011? Is it related to climate change? Atmos Chem Phys 13:5299–5308. doi:10.5194/acp-13-5299-2013

    Article  Google Scholar 

  • Randel WJ, Seidel DJ, Pan LL (2007) Observational characteristics of double tropopauses. J Geophys Res 112:D07309. doi:10.1029/2006JD007904

    Google Scholar 

  • Randel WJ, Garcia RR, Calvo N, Marsh D (2009) ENSO influence on zonal mean temperature and ozone in the tropical lower stratosphere. Geophys Res Lett 36:L15822. doi:10.1029/2009GL039343

    Article  Google Scholar 

  • Reichler T, Dameris M, Sausen R (2003) Determining the tropopause height from gridded data. Geophys Res Lett 30:2042. doi:10.1029/2003GL018240,20

    Article  Google Scholar 

  • Rieder HE, Jancso LM, Rocco SD et al (2011) Extreme events in total ozone over the Northern mid-latitudes: an analysis based on long-term data sets from five European ground-based stations. Tellus B 63:860–874. doi:10.1111/j.1600-0889.2011.00575.x

    Article  Google Scholar 

  • Rieder HE, Frossard L, Ribatet M et al (2013) On the relationship between total ozone and atmospheric dynamics and chemistry at mid-latitudes—part 2: the effects of the El Niño/Southern Oscillation, volcanic eruptions and contributions of atmospheric dynamics and chemistry to long-term total ozone changes. Atmos Chem Phys 13:165–179. doi:10.5194/acp-13-165-2013

    Article  Google Scholar 

  • Simmons A, Uppala S, Dee D, Kobayashi S (2007) ERA-Interim: new ECMWF reanalysis products from 1989 onwards. ECMWF Newsl 110:25–35

    Google Scholar 

  • Steinbrecht W, Claude H, Kohler U, Hoinka KP (1998) Correlations between tropopause height and total ozone: implications for long-term changes. J Geophys Res 103:19183–19192

    Article  Google Scholar 

  • Steinbrecht W, Hassler B, Claude H, Winkler P, Stolarski RS (2003) Global distribution of total ozone and lower stratospheric temperature variations. Atmos Chem Phys 3:1421–1438. doi:10.5194/acp-3-1421-2003

    Article  Google Scholar 

  • Steinbrecht W, Köhler U, Claude H, Weber M, Burrows JP, van der A RJ (2011) Very high ozone columns at northern mid-latitudes in 2010. Geophys Res Lett 38:L06803. doi:10.1029/2010GL046634

    Article  Google Scholar 

  • Vaughan G, Price JD (1991) On the relation between total ozone and meteorology. Q J R Meteorol Soc 117:1281–1298

    Article  Google Scholar 

  • Weber M, Dikty S, Burrows JP, Garny H, Dameris M, Kubin A, Abalichin J, Langematz U (2011) The Brewer–Dobson circulation and total ozone from seasonal to decadal time scales. Atmos Chem Phys 11:11221–11235. doi:10.5194/acp-11-11221-2011

    Article  Google Scholar 

  • World Meteorological Organization (1957) Definition of the thermal tropopause. WMO Bulletin, pp 136–137

  • World Meteorological Organization (1996) Guide to meteorological instruments and methods of observation.WMO Publ 8, 6th edn, Geneva

  • World Meteorological Organization (2007) Scientific assessment of ozone depletion: 2006. Global Ozone Research and Monitoring Project, Technical Report 50, Geneva, Switzerland

  • World Meteorological Organization (2011) Scientific assessment of ozone depletion: 2010. Global Ozone Research and Monitoring Project, Technical Report 52, Geneva, Switzerland

Download references

Acknowledgments

The authors would like to thank the teams responsible for the provision of data used in this paper: the Brewer TOC data have been provided by the Spanish Agency of Meteorology (Madrid, Murcia, Zaragoza, and A Coruña) and the Spanish Institute of Aerospace Technique (El Arenosillo); the ERA-Interim data have been provided by the European Centre for Medium-Range Weather Forecasts (ECMWF). Manuel Antón thanks Ministerio de Ciencia e Innovación and Fondo Social Europeo for the award of a postdoctoral grant (Ramón y Cajal). This work was partially supported the Ministerio de Ciencia e Innovación through project CGL2011-29921-C02-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Mateos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mateos, D., Antón, M., Sáenz, G. et al. Dynamical and temporal characterization of the total ozone column over Spain. Clim Dyn 44, 1871–1880 (2015). https://doi.org/10.1007/s00382-014-2223-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-014-2223-4

Keywords

Navigation