Skip to main content

Advertisement

Log in

Regional climate model performance in the Lake Victoria basin

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Lake Victoria, the second largest freshwater lake in the world, plays a crucial role in the hydrology of equatorial eastern Africa. Understanding how climate change may alter rainfall and evaporation patterns is thus of vital importance for the economic development and the livelihood of the region. Regional rainfall distribution appears, up to a large extent, to be controlled by local drivers which may be not well resolved in general circulation model simulations. We investigate the performance over the Lake Victoria basin of an ensemble of UK Met Office Hadley Centre regional climate model (HadRM3P) simulations at 50 km, driven by five members of the Hadley Centre global perturbed-physics ensemble (QUMP). This is part of the validation of an ensemble of simulations that has been used to assess the impacts of climate change over the continent over the period 1950–2099. We find that the regional climate model is able to simulate a lake/land breeze over Lake Victoria, which is a significant improvement over the driving global climate model and a vital step towards reproducing precipitation characteristics in the region. The local precipitation correlates well with large-scale processes in the Pacific Ocean and Indian Ocean, which is in agreement with observations. We find that the spatial pattern of precipitation in the region and the diurnal cycle of convection is well represented although the amount of rainfall over the lake appears to be overestimated in most seasons. Reducing the observational uncertainty in precipitation over the lake through future field campaigns would enable this model bias to be better quantified. We conclude that increasing the spatial resolution of the model significantly improves its ability to simulate the current climate of the Lake Victoria basin. We suggest that, despite the higher computational costs, the inclusion of a model which allows two-way interactions between the lake and its surroundings should be seriously considered for any new climate projections for the region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Colin Jones, personal communication.

  2. Chris Tubbs, personal communication.

  3. We describe the analysis here in terms of the Pearson correlation coefficient for clarity. Note that non-linear relationships between the time series will not be represented by this measure. In addition, it should be noted that this measure is not resistant to outlying data, in that the Pearson correlation coefficient can be sensitive to a few extreme points. We have also looked at scatter plots of these time series and the Spearman’s rank correlation coefficient (not shown).

  4. Please contact the authors for more information.

References

  • Adler RF, Huffman GJ, Chang A, Ferraro R, Xie PP, Janowiak J, Rudolf B, Schneider U, Curtis S, Bolvin D, Gruber A, Susskind J, Arkin P, Nelkin E (2003) The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979 Present). J Hydrometeorol 4(6):1147–1167. doi:10.1175/1525-7541(2003)004<1147:tvgpcp>2.0.co;2

    Article  Google Scholar 

  • Anyah RO, Semazzi FHM (2004) Simulation of the sensitivity of Lake Victoria basin climate to lake surface temperatures. Theor Appl Climatol 79(1–2):55–69. doi:10.1007/s00704-004-0057-4

    Article  Google Scholar 

  • Anyah RO, Semazzi F (2009) Idealized simulation of hydrodynamic characteristics of Lake Victoria that potentially modulate regional climate. Int J Climatol 29(7):971–981. doi:10.1002/joc.1795

    Article  Google Scholar 

  • Anyah RO, Semazzi FHM, Xie L (2006) Simulated physical mechanisms associated with climate variability over Lake Victoria basin in East Africa. Mon Weather Rev 134(12):3588–3609. doi:10.1175/mwr3266.1

    Article  Google Scholar 

  • Ba MB, Nicholson SE (1998) Analysis of convective activity and its relationship to the rainfall over the rift valley lakes of East Africa during 198390 using the meteosat infrared channel. J Appl Meteorol 37(10):1250–1264. doi:10.1175/1520-0450(1998)037<1250:aocaai>2.0.co;2

    Article  Google Scholar 

  • Bell GD, Halpert MS (1998) Climate assessment for 1997. Bull Am Meteorol Soc 79(5):1014. doi:10.1175/1520-0477(1998)079<1014:caf>2.0.co;2

    Article  Google Scholar 

  • Bhaskaran B, Ramachandran A, Jones R, Moufouma-Okia W (2012), Regional climate model applications on sub-regional scales over the indian monsoon region: the role of domain size on downscaling uncertainty. J Geophys Res 117(D10):113. doi:10.1029/2012jd017956

  • Birkett C, Murtugudde R, Allan T (1999) Indian Ocean climate event brings floods to East Africa’s lakes and the Sudd Marsh. Geophys Res Lett 26(8):1031. doi:10.1029/1999gl900165

  • Buonomo E, Jones R, Huntingford C, Hannaford J (2007) On the robustness of changes in extreme precipitation over europe from two high resolution climate change simulations. Q J R Meteorol Soc 133(622):65–81. doi:10.1002/qj.13

  • Buontempo C, Mathison C, Jones R, Williams K, Wang C, McSweeney C (2013) Regional climate modelling for Africa with PRECIS. Clim Dyn (submitted)

  • Cerezo-Mota R, Allen M, Jones R (2011) Mechanisms controlling precipitation in the northern portion of the North American monsoon. J Clim 24(11):2771–2783. doi:10.1175/2011jcli3846.1

    Article  Google Scholar 

  • Chamberlain JM, Bain CL, Boyd DFA, McCourt K, Butcher T, Palmer S (2013) Forecasting storms over Lake Victoria using a high resolution model. Meteorol Appl. doi:10.1002/met.1403

  • Conway D (2004) Extreme rainfall events and lake level changes in East Africa: recent events and historical precedents the East African Great Lakes: limnology, palaeolimnology and biodiversity. In: Odada EO, Olago DO (eds) The East African Great Lakes: limnology, palaeolimnology and biodiversity, advances in global change research, vol 12, Chap 2. Springer, Dordrecht, pp 63–92. doi:10.1007/0-306-48201-0_2

  • Datta RK (1981) Certain aspects of monsoonal precipitation dynamics over Lake Victoria, Chap 22. Cambridge University Press, Cambridge

  • Druyan L, Feng J, Cook K, Xue Y, Fulakeza M, Hagos S, Konaré A, Moufouma-Okia W, Rowell D, Vizy E, Ibrah S (2010) The WAMME regional model intercomparison study. Clim Dyn 35(1):175–192. doi:10.1007/s00382-009-0676-7

    Article  Google Scholar 

  • Essery R, Best M, Cox P (2001) Moses 2.2 technical documentation. Tech. Rep. 30, Hadley Centre. http://www.metoffice.gov.uk/media/pdf/9/j/HCTN_30.pdf

  • Flohn H, Burkhardt T (1985) Nile runoff at Aswan and Lake Victoria: a case of a discontinuous climate time series. Z Gletscherk Glazialgeol 21:125–130

    Google Scholar 

  • Giorgi F, Jones C, Asrar GR (2009) Addressing climate change needs at the regional level: the CORDEX framework. WMO Bull 58(3). http://www.wmo.int/pages/publications/bulletin_en/archive/58_3_en/58_3_giorgi_en.html

  • Hastenrath S (1990) Decadal-scale changes of the circulation in the tropical atlantic sector associated with sahel drought. Int J Climatol 10(5):459–472. doi:10.1002/joc.3370100504

    Article  Google Scholar 

  • Huffman G, Adler R, Bolvin D, Nelkin E (2010) The TRMM multi-satellite precipitation analysis (TMPA). In: Gebremichael M, Hossain F (eds) Satellite rainfall applications for surface hydrology. Springer, Dordrecht, pp 3–22. doi:10.1007/978-90-481-2915-7_1

  • Huffman GJ, Bolvin DT, Nelkin EJ, Wolff DB, Adler RF, Gu G, Hong Y, Bowman KP, Stocker EF (2007) The TRMM multisatellite precipitation analysis (TMPA): quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeorol 8(1):38–55. doi:10.1175/jhm560.1

    Article  Google Scholar 

  • Indeje M, Semazzi FHM, Ogallo LJ (2000) ENSO signals in East African rainfall seasons. Int J Climatol 20:19–46. doi:10.1002/(SICI)1097-0088(200001)20:1<19::AID-JOC449>3.0.CO;2-0

  • Jones RG, Noguer M, Hassell DC, Hudson D, Wilson SS, Jenkins GJ, Mitchell JFB (2004) Generating high resolution climate change scenarios using PRECIS. Met Office Hadley Centre, Exeter, UK. http://www.metoffice.gov.uk/media/pdf/6/5/PRECIS_Handbook.pdf

  • Kizza M, Rodhe A, Xu CY, Ntale HK, Halldin S (2009) Temporal rainfall variability in the Lake Victoria basin in East Africa during the twentieth century. Theor Appl Climatol 98:119–135. doi:10.1007/s00704-008-0093-6

    Article  Google Scholar 

  • Kizza M, Westerberg I, Rodhe A, Ntale HK (2012) Estimating areal rainfall over Lake Victoria and its basin using ground-based and satellite data. J Hydrol. doi:10.1016/j.jhydrol.2012.07.024

    Google Scholar 

  • Knapp KR, Ansari S, Bain CL, Bourassa MA, Dickinson MJ, Funk C, Helms CN, Hennon CC, Holmes CD, Huffman GJ, Kossin JP, Lee HT, Loew A, Magnusdottir G (2011) Globally gridded satellite observations for climate studies. Bull Am Meteorol Soc 92(7):893–907. doi:10.1175/2011bams3039.1

    Article  Google Scholar 

  • Love TB, Kumar V, Xie P, Thiaw W (2004) A 20-year daily Africa precipitation climatology using satellite and gauge data (2004–84Annual\_14a ppclim). In: 14th conference on applied climatology. http://ams.confex.com/ams/84Annual/techprogram/paper_67484.htm

  • MacCallum S, Merchant C (2010) ATSR reprocessing for climate lake surface temperature (ARC-lake): algorithm theoretical basis document. Tech. rep., University of Edinburgh. http://www.geos.ed.ac.uk/arclake/ARC-Lake-ATBD-v1.0.pdf

  • MacCallum S, Merchant C (2011) ARC-lake: data product description. Tech. rep., University of Edinburgh. http://www.geos.ed.ac.uk/arclake/ARCLake_DPD_v1_1_1.pdf

  • Marengo JA, Jones R, Alves LM, Valverde MC (2009) Future change of temperature and precipitation extremes in South America as derived from the PRECIS regional climate modeling system. Int J Climatol 29(15):2241–2255. doi:10.1002/joc.1863

    Article  Google Scholar 

  • Mariotti L, Coppola E, Sylla MB, Giorgi F, Piani C (2011) Regional climate model simulation of projected 21st century climate change over an all-Africa domain: comparison analysis of nested and driving model results. J Geophys Res 116(D15):111. doi:10.1029/2010jd015068

  • Mitchell TD, Jones PD (2005) An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int J Climatol 25(6):693–712. doi:10.1002/joc.1181

    Article  Google Scholar 

  • Nakicenovic N, Alcamo J, Davis G, de Vries B, Fenhann J, Gaffin S, Gregory K, Grübler A, Jung TY, Kram T, La Rovere EL, Michaelis L, Mori S, Morita T, Pepper W, Pitcher H, Price L, Riahi K, Roehrl A, Rogner HH, Sankovski A, Schlesinger M, Shukla P, Smith S, Swart R, van Rooijen S, Victor N, Dadi Z (2000) Special report on emissions scenarios. Tech. rep., IPCC. http://www.grida.no/publications/other/ipcc_sr/?src=/climate/ipcc/emission/

  • Nicholson SE (1996) A review of climate dynamics and climate variability in Eastern Africa. The limnology, climatology and paleoclimatology of the East African lakes. Springer, Dordrecht, pp 25–56 (1996)

  • Nicholson SE, Kim J (1997) The relationship of the el niÑosouthern oscillation to african rainfall. Int J Climatol 17(2):117–135. doi:10.1002/(sici)1097-0088(199702)17:2%3C117::aid-joc84%3E3.0.co;2-o

    Article  Google Scholar 

  • Nikulin G, Jones C, Giorgi F, Asrar G, Büchner M, Cerezo-Mota R, Christensen OB, Déqué M, Fernandez J, Hänsler A, van Meijgaard E, Samuelsson P, Sylla MB, Sushama L (2012) Precipitation climatology in an ensemble of CORDEX-africa regional climate simulations. J Clim 25(18):6057–6078. doi:10.1175/jcli-d-11-00375.1

    Article  Google Scholar 

  • Ntale HK, Gan TY (2004) East African rainfall anomaly patterns in association with el Niño/Southern oscillation. J Hydrol Eng 9(4):257. doi:10.1061/(ASCE)1084-0699(2004)9:4(257)

  • Rowell DP (2013) Simulating SST teleconnections to Africa: what is the state of the art? J Clim 26(15):5397–5418. doi:10.1175/jcli-d-12-00761.1

    Article  Google Scholar 

  • Saji NH, Goswami BN, Vinayachandran PN, Yamagata T (1999) A dipole mode in the tropical Indian Ocean. Nature 401(6751):360–363. doi:10.1038/43854

    Google Scholar 

  • Saji NH, Yamagata T (2003) Possible impacts of Indian Ocean dipole mode events on global climate. Clim Res 25:151–169

    Article  Google Scholar 

  • Schneider P, Hook SJ (2010) Space observations of inland water bodies show rapid surface warming since 1985. Geophys Res Lett 37(22):405 doi:10.1029/2010gl045059

  • Semazzi FHM, Burns B, Lin NH, Schemm JK (1996) A GCM study of the teleconnections between the continental climate of Africa and global sea surface temperature anomalies. J Clim 9(10):2480–2497. doi:10.1175/1520-0442(1996)009%3C2480:agsott%3E2.0.co;2

    Article  Google Scholar 

  • Song Y, Semazzi F, Xie L (2004) Development of a coupled regional climate simulation model for the Lake Victoria basin. In: Odada E, Olago D (eds) The East African Great Lakes: limnology, palaeolimnology and biodiversity, advances in blobal change research, vol 12. Springer, Dordrecht, pp 153–186. doi:10.1007/0-306-48201-0_5

  • Song Y, Semazzi FHM, Xie L, Ogallo LJ (2004) A coupled regional climate model for the Lake Victoria basin of East Africa. Int J Climatol 24(1):57–75. doi:10.1002/joc.983

    Article  Google Scholar 

  • Stephens GL, L’Ecuyer T, Forbes R, Gettlemen A, Golaz JC, Bodas-Salcedo A, Suzuki K, Gabriel P, Haynes J (2010) Dreary state of precipitation in global models. J Geophys Res 115(D24):211. doi:10.1029/2010jd014532

  • Stirling AJ, Stratton RA (2012) Entrainment processes in the diurnal cycle of deep convection over land. Q J R Meteorol Soc 138(666):1135–1149 (2012). doi:10.1002/qj.1868

  • Stratton RA, Stirling AJ (2012) Improving the diurnal cycle of convection in GCMs. Q J R Meteorol Soc 138(666):1121–1134. doi:10.1002/qj.991

  • Webster PJ, Moore AM, Loschnigg JP, Leben RR (1999) Coupled ocean–atmosphere dynamics in the Indian Ocean during 1997–98. Nature 401(6751):356–360. doi:10.1038/43848

    Article  Google Scholar 

  • Xie P, Arkin PA (1997) Global precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull Am Meteorol Soc 78:2539–2558. doi:10.1175/1520-0477(1997)078%3C2539:GPAYMA%3E2.0.CO;2

  • Xu Y, Zhang Y, Lin E, Lin W, Dong W, Jones R, Hassell D, Wilson S (2006) Analyses on the climate change responses over China under SRES b2 scenario using PRECIS. Chin Sci Bull 51(18):2260–2267. doi:10.1007/s11434-006-2099-8

    Article  Google Scholar 

  • Yin X, Nicholson SE, Ba MB (2000) On the diurnal cycle of cloudiness over Lake Victoria and its influence on evaporation from the lake. Hydrol Sci J 45(3):407–424. doi:10.1080/02626660009492338

    Article  Google Scholar 

Download references

Acknowledgments

Work in this paper has been carried out in support of the project “Adapting to climate change induced water stress in the Nile River Basin”, which was launched in March 2010 as a partnership between the United Nations Environment Programme (UNEP) and the Nile Basin Initiative (NBI), sponsored by the Swedish International Development Cooperation Agency (SIDA). The GPCP combined precipitation data were developed and computed by the NASA/Goddard Space Flight Center’s Laboratory for Atmospheres as a contribution to the GEWEX Global Precipitation Climatology Project. We acknowledge the Climate Explorer pages at KNMI as they greatly facilitate the access and the post-processing of some of the observational data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karina Williams.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Williams, K., Chamberlain, J., Buontempo, C. et al. Regional climate model performance in the Lake Victoria basin. Clim Dyn 44, 1699–1713 (2015). https://doi.org/10.1007/s00382-014-2201-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-014-2201-x

Keywords

Navigation