Skip to main content

Advertisement

Log in

Regional climate model sensitivities to parametrizations of convection and non-precipitating subgrid-scale clouds over South America

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

This study provides a first thorough evaluation of the COnsortium for Small scale MOdeling weather prediction model in CLimate Mode (COSMO-CLM) over South America. Simulations are driven by ERA-Interim reanalysis data. Besides precipitation, we examine the surface radiation budget, cloud cover, 2 m temperatures, and the low level circulation. We evaluate against reanalysis data as well as observations from ground stations and satellites. Our analysis focuses on the sensitivity of results to the convective parametrization in comparison to their sensitivity to the representation of non-precipitating subgrid-scale clouds in the parametrization of radiation. Specifically, we compare simulations with a relative humidity versus a statistical subgrid-scale cloud scheme, in combination with convection schemes according to Tiedtke (Mon Weather Rev 117(8):1779–1800, 1989) and from the European Centre for Medium-Range Weather Forecasts Integrated Forecasting System (IFS) cycle 33r1. The sensitivity of simulated tropical precipitation to the parametrizations of convection and subgrid-scale clouds is of similar magnitude. We show that model runs with different subgrid-scale cloud schemes produce substantially different cloud ice and liquid water contents. This impacts surface radiation budgets, and in turn convection and precipitation. Considering all evaluated variables in synopsis, the model performs best with the (both non-default) IFS and statistical schemes for convection and subgrid-scale clouds, respectively. Despite several remaining deficiencies, such as a poor simulation of the diurnal cycle of precipitation or a substantial austral summer warm bias in northern Argentina, this new setup considerably reduces long-standing model biases, which have been a feature of COSMO-CLM across tropical domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Avgoustoglou A (2011) Various Implementations of a Cloud Scheme in COSMO model. COSMO Newsletter 11, Deutscher Wetterdienst

  • Baker IT, Prihodko L, Denning AS, Goulden M, Miller S, da Rocha HR (2008) Seasonal drought stress in the Amazon: reconciling models and observations. J Geophys Res 113(G1):G00B01. doi:10.1029/2007JG000644

    Google Scholar 

  • Bechtold P, Chaboureau JP, Beljaars A, Betts AK, Köhler M, Miller M, Redelsperger JL (2004) The simulation of the diurnal cycle of convective precipitation over land in a global model. Quart J Roy Meteor Soc 130(604):3119–3137. doi:10.1256/qj.03.103

    Article  Google Scholar 

  • Bechtold P, Köhler M, Jung T, Doblas-Reyes F, Leutbecher M, Rodwell MJ, Vitart F, Balsamo G (2008) Advances in simulating atmospheric variability with the ECMWF model: from synoptic to decadal time-scales. Quart J Roy Meteor Soc 134(634):1337–1351. doi:10.1002/qj.289

    Article  Google Scholar 

  • Bechtold P, Semane N, Lopez P, Chaboureau JP, Beljaars A, Bormann N (2014) Representing equilibrium and nonequilibrium convection in large-scale models. J Atmos Sci 71(2):734–753. doi:10.1175/JAS-D-13-0163.1

    Article  Google Scholar 

  • Betts AK, Jakob C (2002) Evaluation of the diurnal cycle of precipitation, surface thermodynamics, and surface fluxes in the ECMWF model using LBA data. J Geophys Res D Atmos 107(D20):LBA 12-1–LBA 12-8. doi:10.1029/2001JD000427

    Google Scholar 

  • Bhend J, Rockel B (2011) ncdf4Utils 0.5-1. http://redc.clm-community.eu/projects/ncdf4Utils

  • Boers N, Bookhagen B, Marwan N, Kurths J, Marengo JA (2013) Complex networks identify spatial patterns of extreme rainfall events of the South American monsoon system. Geophys Res Lett 40:4386–4392

    Article  Google Scholar 

  • Bookhagen B, Strecker MR (2008) Orographic barriers, high-resolution TRMM rainfall, and relief variations along the eastern Andes. Geophys Res Lett 35(6):L06403. doi:10.1029/2007GL032011

  • Carvalho LMV, Jones C, Liebmann B (2004) The South Atlantic convergence zone: intensity, form, persistence, and relationships with intraseasonal to interannual activity and extreme rainfall. J Clim 17(1):88–108. doi:10.1175/1520-0442(2004)017<0088:TSACZI>2.0.CO;2

    Article  Google Scholar 

  • Carvalho LMV, Jones C, Posadas AND, Quiroz R, Bookhagen B, Liebmann B (2012) Precipitation characteristics of the South American monsoon system derived from multiple datasets. J Clim 25(13):4600–4620. doi:10.1175/JCLI-D-11-00335.1

    Article  Google Scholar 

  • Cook B, Zeng N, Yoon JH (2011) Will amazonia dry out? Magnitude and causes of change from IPCC climate model projections. Earth Interact 16(3):1–27. doi:10.1175/2011EI398.1

    Article  Google Scholar 

  • Correia FWS, Alvalá RCS, Manzi AO (2008) Modeling the impacts of land cover change in Amazonia: a regional climate model (RCM) simulation study. Theor Appl Climatol 93(3–4):225–244. doi:10.1007/s00704-007-0335-z

    Article  Google Scholar 

  • Dai A (2006) Precipitation characteristics in eighteen coupled climate models. J Clim 19(18):4605–4630. doi:10.1175/JCLI3884.1

    Article  Google Scholar 

  • Dai A, Giorgi F, Trenberth KE (1999) Observed and model-simulated diurnal cycles of precipitation over the contiguous United States. J Geophys Res D Atmos 104(D6):6377–6402. doi:10.1029/98JD02720

    Article  Google Scholar 

  • Davies HC (1976) A laterul boundary formulation for multi-level prediction models. Quart J Roy Meteor Soc 102(432):405–418. doi:10.1002/qj.49710243210

    Google Scholar 

  • Davin EL, Seneviratne SI (2011) Role of land surface processes and diffuse/direct radiation partitioning in simulating the European climate. Biogeosci Dis 8(6):11601–11630

    Article  Google Scholar 

  • Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Hólm EV, Isaksen L, Kållberg P, Köhler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette JJ, Park BK, Peubey C, de Rosnay P, Tavolato C, Thépaut JN, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quart J Roy Meteor Soc 137(656):553–597. doi:10.1002/qj.828

    Article  Google Scholar 

  • Dickinson R, Henderson-Sellers A, Kennedy P, Wilson M (1986) Biosphere-atmosphere transfer scheme (BATS) forcing the ncar community climate model. NCAR Technical Note TN275+STR, NCAR

  • Dickinson RE (1984) Modeling Evapotranspiration for three-dimensional global climate models, vol 29, American Geophysical Union, pp 58–72. doi:10.1029/GM029p0058

  • Doms G, Förstner J, Heise E, Herzog HJ, Mironov D, Raschendorfer M, Reinhardt T, Ritter B, Schrodin R, Schulz JP, Vogel G (2011) A Description of the Nonhydrostatic Regional COSMO Model. Physical Parameterization. Deutscher Wetterdienst, Part II

  • Fischer EM, Beyerle U, Knutti R (2013) Robust spatially aggregated projections of climate extremes. Nat Clim Change 3(12):1033–1038

    Article  Google Scholar 

  • Fischer T, Menz C, Su B, Scholten T (2013) Simulated and projected climate extremes in the Zhujiang River Basin, South China, using the regional climate model COSMO-CLM. Int J Climatol 33:2988–3001. doi:10.1002/joc.3643

    Article  Google Scholar 

  • Garreaud RD, Vuille M, Compagnucci R, Marengo JA (2009) Present-day South American climate. Palaeogeogr Palaeocl 281(3–4):180–195. doi:10.1016/j.palaeo.2007.10.032

    Article  Google Scholar 

  • Geleyn JF, Hollingsworth A (1979) An economical analytical method for the computation of the interaction between scattering and line absorption of radiation. Beitr Phys Atm 52:1–16

    Google Scholar 

  • Giorgi F, Jones C, Asrar GR (2009) Addressing climate information needs at the regional level: the CORDEX framework. WMO Bull 58(3):175–183

    Google Scholar 

  • Grabowski WW, Bechtold P, Cheng A, Forbes R, Halliwell C, Khairoutdinov M, Lang S, Nasuno T, Petch J, Tao WK, Wong R, Wu X, Xu KM (2006) Daytime convective development over land: a model intercomparison based on LBA observations. Quart J Roy Meteor Soc 132(615):317–344. doi:10.1256/qj.04.147

    Article  Google Scholar 

  • Gregory D, Morcrette JJ, Jakob C, Beljaars ACM, Stockdale T (2000) Revision of convection, radiation and cloud schemes in the ECMWF integrated forecasting system. Quart J Roy Meteor Soc 126(566):1685–1710

    Article  Google Scholar 

  • Harris I, Jones PD, Osborn TJ, Lister DH (2013) Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 Dataset. Int J Climatol in press, doi:10.1002/joc.3711

  • Hohenegger C, Brockhaus P, Schar C (2008) Towards climate simulations at cloud-resolving scales. Meteorol Z 17(4):383–394. doi:10.1127/0941-2948/2008/0303

    Article  Google Scholar 

  • Hohenegger C, Brockhaus P, Bretherton CS, Schär C (2009) The soil moisture-precipitation feedback in simulations with explicit and parameterized convection. J Clim 22(19):5003–5020. doi:10.1175/2009JCLI2604.1

    Article  Google Scholar 

  • Huffman GJ, Bolvin DT, Nelkin EJ, Wolff DB, Adler RF, Gu G, Hong Y, Bowman KP, Stocker EF (2007) The TRMM multisatellite precipitation analysis (TMPA): quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J Hydrometeorol 8(1):38–55. doi:10.1175/JHM560.1

    Article  Google Scholar 

  • Jaeger EB, Anders I, Lüthi D, Rockel B, Schär C, Seneviratne SI (2008) Analysis of ERA40-driven CLM simulations for Europe. Meteorol Z 17(4):349–367. doi:10.1127/0941-2948/2008/0301

    Article  Google Scholar 

  • Joetzjer E, Douville H, Delire C, Ciais P (2013) Present-day and future Amazonian precipitation in global climate models: CMIP5 versus CMIP3. Clim Dyn 41(11–12):2921–2936. doi:10.1007/s00382-012-1644-1

    Article  Google Scholar 

  • Jones PW (1999) First- and second-order conservative remapping schemes for grids in spherical coordinates. Mon Weather Rev 127(9):2204–2210. doi:10.1175/1520-0493(1999)127<2204:fasocr>2.0.co;2

    Article  Google Scholar 

  • Koster RD, Dirmeyer PA, Guo Z, Bonan G, Chan E, Cox P, Gordon CT, Kanae S, Kowalczyk E, Lawrence D, Liu P, Lu CH, Malyshev S, McAvaney B, Mitchell K, Mocko D, Oki T, Oleson K, Pitman A, Sud YC, Taylor CM, Verseghy D, Vasic R, Xue Y, Yamada T (2004) Regions of strong coupling between soil moisture and precipitation. Science 305(5687):1138–1140. doi:10.1126/science.1100217

    Article  Google Scholar 

  • Liebmann B, Camargo SJ, Seth A, Marengo JA, Carvalho LMV, Allured D, Fu R, Vera CS (2007) Onset and end of the rainy season in south america in observations and the ECHAM 4.5 atmospheric general circulation model. J Clim 20(10):2037–2050. doi:10.1175/JCLI4122.1

    Article  Google Scholar 

  • Liersch S, Cools J, Kone B, Koch H, Diallo M, Reinhardt J, Fournet S, Aich V, Hattermann FF (2012) Vulnerability of rice production in the inner niger delta to water resources management under climate variability and change. Environ Sci Policy 34:18–33. doi:10.1016/j.envsci.2012.10.014

    Article  Google Scholar 

  • Marengo JA, Soares WR, Saulo C, Nicolini M (2004) Climatology of the low-level jet east of the Andes as derived from the ncep-ncar reanalyses: characteristics and temporal variability. J Clim 17(12):2261–2280. doi:10.1175/1520-0442(2004)017<2261:COTLJE>2.0.CO;2

    Article  Google Scholar 

  • Marengo JA, Jones R, Alves LM, Valverde MC (2009) Future change of temperature and precipitation extremes in South America as derived from the PRECIS regional climate modeling system. Int J Climatol 29(15):2241–2255. doi:10.1002/joc.1863

    Article  Google Scholar 

  • Marengo JA, Ambrizzi T, da Rocha R, Alves L, Cuadra S, Valverde M, Torres R, Santos D, Ferraz S (2010) Future change of climate in South America in the late twenty-first century: intercomparison of scenarios from three regional climate models. Clim Dyn 35:1073–1097. doi:10.1007/s00382-009-0721-6

    Article  Google Scholar 

  • Marengo JA, Chou SC, Kay G, Alves LM, Pesquero JF, Soares WR, Santos DC, Lyra AA, Sueiro G, Betts R, Chagas DJ, Gomes JL, Bustamante JF, Tavares P (2012) Development of regional future climate change scenarios in South America using the Eta CPTEC/HadCM3 climate change projections: climatology and regional analyses for the Amazon, São Francisco and the Paraná River basins. Clim Dyn 38(9–10):1829–1848. doi:10.1007/s00382-011-1155-5

    Article  Google Scholar 

  • Marengo JA, Liebmann B, Grimm AM, Misra V, Cavalcanti IFA, Carvalho LMV, Berbery EH, Ambrizzi T, Vera CS, Saulo AC, Nogues-Paegle J, Zipser E, Seth A, Alves LM (2012) Recent developments on the South American monsoon system. Int J Climatol 32(1):1–21. doi:10.1002/joc.2254

    Article  Google Scholar 

  • Mechoso CR, Robertson AW, Ropelewski CF, Grimm AM (2005) The American Monsoon Systems. In: The Global monsoon system: research and forecast: report of the International Committee of the Third International Workshop on Monsoons (IWM-III) 2–6, WMO

  • Mellor GL (1977) The gaussian cloud model relations. J Atmos Sci 34(2):356–358. doi:10.1175/1520-0469(1977)034<0356:TGCMR>2.0.CO;2

    Article  Google Scholar 

  • Mellor GL, Yamada T (1982) Development of a turbulence closure model for geophysical fluid problems. Rev Geophys 20(4):851–875. doi:10.1029/RG020i004p00851

    Article  Google Scholar 

  • Mendes D, Souza EP, Marengo JA, Mendes MCD (2010) Climatology of extratropical cyclones over the South American-southern oceans sector. Theor Appl Climatol 100(3–4):239–250. doi:10.1007/s00704-009-0161-6

    Article  Google Scholar 

  • Molion LCB (1993) Amazonia rainfall and its variability, International Hydrology Series. Cambrigde University Press, Cambrigde

    Google Scholar 

  • Morcrette JJ, Barker HW, Cole JNS, Iacono MJ, Pincus R (2008) Impact of a new radiation package, McRad, in the ECMWF integrated forecasting system. Mon Weather Rev 136(12):4773–4798. doi:10.1175/2008MWR2363.1

    Article  Google Scholar 

  • Nepstad DC, de Carvalho CR, Davidson EA, Jipp PH, Lefebvre PA, Negreiros GH, da Silva ED, Stone TA, Trumbore SE, Vieira S (1994) The role of deep roots in the hydrological and carbon cycles of Amazonian forests and pastures. Nature 372(6507):666–669. doi:10.1038/372666a0

    Article  Google Scholar 

  • Nicolini M, Salio P, Katzfey JJ, McGregor JL, Saulo AC (2002) January and July regional climate simulation over South America. J Geophys Res D Atmos 107(D22):ACL 12-1–ACL 12-13. doi:10.1029/2001JD000736

    Article  Google Scholar 

  • Nikulin G, Jones C, Giorgi F, Asrar G, Büchner M, Cerezo-Mota R, Christensen OB, Déqué M, Fernandez J, Hänsler A, van Meijgaard E, Samuelsson P, Sylla MB, Sushama L (2012) Precipitation climatology in an ensemble of CORDEX-Africa regional climate simulations. J Clim 25(18):6057–6078. doi:10.1175/JCLI-D-11-00375.1

    Article  Google Scholar 

  • Nogués-Paegle J, Mechoso CR, Fu R, Berbery EH, Chao WC, Chen TC, Cook K, Diaz AF, Enfield D, Ferreira R, Grimm AM, Kousky V, Liebmann B, Marengo JA, Mo K, Neelin JD, Paegle J, Robertson AW, Seth A, Vera CS, Zhou J (2002) Progress in pan American CLIVAR research: understanding the South American monsoon. Meteorologica 27(1):3–32

    Google Scholar 

  • Panitz HJ, Dosio A, Büchner M, Lüthi D, Keuler K (2013) COSMO-CLM (CCLM) climate simulations over CORDEX-Africa domain: analysis of the ERA-Interim driven simulations at \(0.44^\circ\) and \(0.22^\circ\) resolution. Clim Dyn. doi:10.1007/s00382-013-1834-5

  • Parry ML, Canziani OF, Palutikof JP, van der Linder PJ, Hanson CE (2007) Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, UK, chap IPCC, 2007: Summary for Policymakers, pp 7–22

  • Randall D, Khairoutdinov M, Arakawa A, Grabowski W (2003) Breaking the cloud parameterization deadlock. Bull Am Meteorol Soc 84(11):1547–1564. doi:10.1175/BAMS-84-11-1547

    Article  Google Scholar 

  • Raschendorfer M (2001) The new turbulence parameterization of LM. COSMO Newsletter 1, Deutscher Wetterdienst

  • Rickenbach TM, Ferreira RN, Halverson JB, Herdies DL (2002) Modulation of convection in the southwestern Amazon basin by extratropical stationary fronts. J Geophys Res D Atmos 107(D20):LBA 7-1–LBA 7-13. doi:10.1029/2000JD000263

    Article  Google Scholar 

  • Ritter B, Geleyn JF (1992) A comprehensive radiation scheme for numerical weather prediction models with potential applications in climate simulations. Mon Weather Rev 120(2):303–325. doi:10.1175/1520-0493(1992)120<0303:ACRSFN>2.0.CO;2

    Article  Google Scholar 

  • da Rocha RP, Morales CA, Cuadra SV, Ambrizzi T (2009) Precipitation diurnal cycle and summer climatology assessment over South America: an evaluation of regional climate model version 3 simulations. J Geophys Res D Atmos 114(D10):D10108. doi:10.1029/2008JD010212

  • Rockel B, Geyer B (2008) The performance of the regional climate model CLM in different climate regions, based on the example of precipitation. Meteorol Z 17(4):487–498. doi:10.1127/0941-2948/2008/0297

    Article  Google Scholar 

  • Rockel B, Will A, Hense A (2008) The regional climate model COSMO-CLM (CCLM). Meteorol Z 17(4):347–348. doi:10.1127/0941-2948/2008/0309

    Article  Google Scholar 

  • Rossow WB, Schiffer RA (1999) Advances in understanding clouds from ISCCP. Bull Am Meteorol Soc 80(11):2261–2287. doi:10.1175/1520-0477(1999)080<2261:AIUCFI>2.0.CO;2

    Article  Google Scholar 

  • Salazar LF, Nobre CA, Oyama MD (2007) Climate change consequences on the biome distribution in tropical South America. Geophys Res Lett 34(9):L09708. doi:10.1029/2007GL029695

  • Saleska SR, da Rocha HR, Huete AR, Nobre AD, Artaxo P, Shimabukuro YE (2009) LBA-ECO CD-32 Brazil Flux Network Integrated Data: 1999–2006. Data set. Available on-line: [http://www.daac.ornl.gov] from Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, USA and [http://lba.cptec.inpe.br/] from LBA Data and Information System, National Institute for Space Research (INPE/CPTEC), Cachoeira Paulista, Sao Paulo, Brazil

  • Salio P, Nicolini M, Zipser EJ (2007) Mesoscale convective systems over southeastern South America and their relationship with the South American low-level jet. Mon Weather Rev 135(4):1290–1309. doi:10.1175/MWR3305.1

    Article  Google Scholar 

  • Schewe J, Heinke J, Gerten D, Haddeland I, Arnell NW, Clark DB, Dankers R, Eisner S, Fekete BM, Colón-González FJ, Gosling SN, Kim H, Liu X, Masaki Y, Portmann FT, Satoh Y, Stacke T, Tang Q, Wada Y, Wisser D, Albrecht T, Frieler K, Piontek F, Warszawski L, Kabat P (2014) Multimodel assessment of water scarcity under climate change. Proc Natl Acad Sci 111(9):3245–3250. doi:10.1073/pnas.1222460110

  • Schrodin R, Heise E (2001) The multi-layer version of the DWD soil model TERRA-LM. COSMO Technical Report 2, Deutscher Wetterdienst

  • Seth A, Rojas M (2003) Simulation and sensitivity in a nested modeling system for South America. Part I: reanalyses boundary forcing. J Clim 16(15):2437–2453

    Article  Google Scholar 

  • Santos e Silva CM, de Freitas SR, Gielow R (2012) Numerical simulation of the diurnal cycle of rainfall in SW Amazon basin during the 1999 rainy season: the role of convective trigger function. Theor Appl Climatol 109(3–4):473–483. doi:10.1007/s00704-011-0571-0

    Article  Google Scholar 

  • Silva Dias MAF, Petersen W, Cifelli R, Betts AK, Longo M, Gomes AM, Fisch GF, Lima MA, Antonio MA, Albrecht RI (2002) A case study of convective organization into precipitating lines in the Southwest Amazon during the WETAMC and TRMM-LBA. J Geophys Res D Atmos 107(D20):LBA 46-1–LBA 46-23. doi:10.1029/2001JD000375

    Google Scholar 

  • Slingo JM (1987) The development and verification of a cloud prediction scheme for the ecmwf model. Quart J Roy Meteor Soc 113(477):899–927. doi:10.1002/qj.49711347710

    Article  Google Scholar 

  • Smagorinsky J (1960) On the dynamical prediction of large-scale condensation by numerical methods, American Geophysical Union, pp 71–78. doi:10.1029/GM005p0071

  • Solman SA, Sanchez E, Samuelsson P, Rocha RP, Li L, Marengo J, Pessacg NL, Remedio ARC, Chou SC, Berbery H, Treut H, Castro M, Jacob D (2013) Evaluation of an ensemble of regional climate model simulations over South America driven by the ERA-Interim reanalysis: model performance and uncertainties. Clim Dyn 41(5–6):1139–1157. doi:10.1007/s00382-013-1667-2

    Article  Google Scholar 

  • Sommeria G, Deardorff JW (1977) Subgrid-scale condensation in models of nonprecipitating clouds. J Atmos Sci 34(2):344–355. doi:10.1175/1520-0469(1977)034<0344:SSCIMO>2.0.CO;2

    Article  Google Scholar 

  • Stackhouse PWJ, Gupta SK, Cox SJ, Mikovitz C, Zhang T, Hinkelman LM (2011) The NASA/GEWEX surface radiation budget release 3.0: 24.5-year dataset. GEWEX News 21(1):10–12, NASA

  • Steppeler J, Doms G, Schättler U, Bitzer HW, Gassmann A, Damrath U, Gregoric G (2003) Meso-gamma scale forecasts using the nonhydrostatic model LM. Meteorol Atmos Phys 82(1–4):75–96. doi:10.1007/s00703-001-0592-9

    Article  Google Scholar 

  • Stocker T, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (2013) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, chap IPCC, 2013: Summary for Policymakers

  • Taylor CM, de Jeu RAM, Guichard F, Harris PP, Dorigo WA (2012) Afternoon rain more likely over drier soils. Nature 489(7416):423–426. doi:10.1038/nature11377

    Article  Google Scholar 

  • Tiedtke M (1989) A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon Weather Rev 117(8):1779–1800. doi:10.1175/1520-0469(2002)059<1917:APPFTS>2.0.CO;2

    Article  Google Scholar 

  • Tompkins AM (2002) A prognostic parameterization for the subgrid-scale variability of water vapor and clouds in large-scale models and its use to diagnose cloud cover. J Atmos Sci 59(12):1917–1942. doi:10.1175/1520-0469(2002)059<1917:APPFTS>2.0.CO;2

    Article  Google Scholar 

  • Toreti A, Naveau P, Zampieri M, Schindler A, Scoccimarro E, Xoplaki E, Dijkstra HA, Gualdi S, Luterbacher J (2013) Projections of global changes in precipitation extremes from coupled model intercomparison project phase 5 models. Geophys Res Lett 40(18):4887–4892. doi:10.1002/grl.50940

    Google Scholar 

  • Vera CS, Higgins W, Amador J, Ambrizzi T, Garreaud R, Gochis D, Gutzler D, Lettenmaier D, Marengo JA, Mechoso CR, Nogues-Paegle J, Dias PLS, Zhang C (2006) Toward a unified view of the American monsoon systems. J Clim 19(20):4977–5000. doi:10.1175/JCLI3896.1

    Article  Google Scholar 

  • Vera CS, Silvestri G, Liebmann B, González P (2006) Climate change scenarios for seasonal precipitation in South America from IPCC-AR4 models. Geophys Res Lett 33(13):L13707. doi:10.1029/2006GL025759

  • Žagar N, Andersson E, Fisher M (2005) Balanced tropical data assimilation based on a study of equatorial waves in ECMWF short-range forecast errors. Quart J Roy Meteor Soc 131(607):987–1011. doi:10.1256/qj.04.54

    Article  Google Scholar 

  • Žagar N, Skok G, Tribbia J (2011) Climatology of the ITCZ derived from ERA Interim reanalyses. J Geophys Res D Atmos 116(D15):D15103. doi:10.1029/2011JD015695

  • Wagner S, Fast I, Kaspar F (2011) Climatic changes between 20th century and pre-industrial times over South America in regional model simulations. Clim Past Discuss 7(5):2981–3022. doi:10.5194/cpd-7-2981-2011

    Article  Google Scholar 

  • Warszawski L, Friend A, Ostberg S, Frieler K, Lucht W, Schaphoff S, Beerling D, Cadule P, Ciais P, Clark DB, Kahana R, Ito A, Keribin R, Kleidon A, Lomas M, Nishina K, Pavlick R, Rademacher TT, Buechner M, Piontek F, Schewe J, Serdeczny O, Schellnhuber HJ (2013) A multi-model analysis of risk of ecosystem shifts under climate change. Environ Res Lett 8(4), doi:10.1088/1748-9326/8/4/044018

  • Xu J, Small EE (2002) Simulating summertime rainfall variability in the North American monsoon region: the influence of convection and radiation parameterizations. J Geophys Res D Atmos 107(D23):-ACL 22-1–-ACL 22-17. doi:10.1029/2001JD002047

    Google Scholar 

  • Zahn M, von Storch H (2008) A long-term climatology of North Atlantic polar lows. Geophys Res Lett 35(22), doi:10.1029/2008GL035769

  • Zhou J, Lau KM (1998) Does a monsoon climate exist over South America? J Clim 11(5):1020–1040. doi:10.1175/1520-0442(1998)011<1020:DAMCEO>2.0.CO;2

    Article  Google Scholar 

Download references

Acknowledgments

This paper was developed within the scope of the IRTG 1740/TRP 2011/50151-0, funded by the DFG/FAPESP. Map plots were made using the R package ncdf4Utils (Bhend and Rockel 2011). The authors appreciate observational data provision by the TRMM, ISCCP, NASA/GEWEX, CRU, ECMWF, and INPE/CPTEC. We thank Celso von Randow for his help on the flux tower data and Jürgen Kurths for his encouragement to write this paper. Comments by two anonymous reviewers helped to improve the quality of the manuscript and are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Lange.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lange, S., Rockel, B., Volkholz, J. et al. Regional climate model sensitivities to parametrizations of convection and non-precipitating subgrid-scale clouds over South America. Clim Dyn 44, 2839–2857 (2015). https://doi.org/10.1007/s00382-014-2199-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-014-2199-0

Keywords