Abstract
The climate of the Western-Himalayan (WH) region is sensitively dependent on precipitation during the winter and early spring months (December-to-April, DJFMA) produced largely by synoptic weather-systems known as “Western Disturbances” (WD), which originate from the Mediterranean region and propagate eastward as troughs and cyclonic lows embedded in the sub-tropical westerlies. While the WH region has witnessed a significant rise in surface temperatures since the post-1950s, there are no major trends in the DJFMA seasonal precipitation. Past studies, based on station observations from the WH, have reported a significant increase in the occurrence of extreme precipitation events in recent decades. Here, we have analyzed multi-source climate datasets to understand the increasing frequency of heavy precipitation events over WH. Our analysis suggests that pronounced warming trends over the Tibetan Plateau in recent decades, arising due to the elevation dependency of the climatic warming signal, have favored enhancement of meridional temperature gradients at middle and upper-tropospheric levels over the sub-tropics and mid-latitudes. The present findings indicate that the observed pattern of mid-tropospheric warming trend in recent decades over west-central Asia has led to increased baroclinic instability of the mean westerly winds, thereby favoring increased variability of WDs and higher propensity of heavy precipitation events over the WH.
Similar content being viewed by others
Notes
Given the high elevation of the Tibetan Plateau, the sub-tropical/mid-latitude westerly winds at 700 hPa during DJFMA prevail to the north of 35°N where elevations are less than 3,100 m and also to the west of 70°E.
References
Agnihotri CL, Singh MS (1982) Satellite study of western disturbances. Mausam 33:249–254
Alford D, Armstrong R, Racoviteanu A (2010) Glacier retreat in the Nepal Himalaya: an assessment of the role of glaciers in the hydrologic regime of the Nepal Himalaya. A report to South Asia Sustainable Development (SASDN) Office, Environment and Water Resources Unit, The World Bank, Washington, DC
Archer DR, Fowler HJ (2004) Spatial and temporal variations in precipitation in the Upper Indus basin, global teleconnections and hydrological implications. Hydrol Earth Syst Sci 8:47–61
Azadi M, Mohanty UC, Madan OP, Padmanabhamurty (2001) Prediction of precipitation associated with a western disturbance using a high-resolution regional model: role of parameterization of physical processes. Meteorol Appl 7:317–326
Bengtsson L, Hodges KI, Roeckner E (2006) Storm tracks and climate change. J Clim 19:3518–3543
Bhutiyani MR, Kale VS, Pawar NJ (2007) Long-term trends in maximum, minimum and mean annual air temperatures across the northwestern Himalaya during the 20th century. Clim Change 85:159–177
Borgaonkar HP, Somaru Ram, Sikder AB (2009) Assessment of tree-ring analysis of high-elevation Cedrus deodara D. Don from Western Himalaya (India) in relation to climate and glacier fluctuations. Dendrochronologia 27:59–69
Choi G et al (2009) Changes in means and extreme events of temperature and precipitation in the Asia-Pacific Network region, 1955–2007. Int J Climatol 29(13):1906–1925
Das MR, Mukhopadhyay RK, Dandekar MM, Kshirsagar SR (2002) Pre-monsoon western disturbances in relation to monsoon rainfall, its advancement over NW India and their trends. Curr Sci 82(11):1320–1321
Dhar ON, Kulkarni AK, Sangam EB (1984) Some aspects of winter & monsoon rainfall distribution over the Garhwal-Kumaon Himalayas—a brief appraisal. Himal Res Dev 2:10–19
Diaz HF, Bradley RS (1997) Temperature variations during the last century at high elevation sites. Clim Change 36:253–279
Dimri AP (2006) Surface and upper air fields during extreme winter precipitation over the western Himalayas. Pure appl Geophys 163:1679–1698
Dimri AP, Mohanty UC, Mandal M (2004) Simulation of heavy precipitation associated with an intense western disturbance over Western Himalayas. Nat Hazards 31:499–521
Duan AM, Wu GX, Zhang Q, Liu YM (2006) New proofs of the recent climate warming over the Tibetan Plateau as a result of the increasing greenhouse gases emissions. Chin Sci Bull 51(11):1396–1400
Duchon CE (1979) Lanczos filtering in one and two dimensions. J Appl Meteorol 18:1016–1022
Gitelman AI, Risbey JS, Kass RE, Rosen RD (1999) Sensitivity of a meridional temperature gradient index to latitudinal domain. J Geophys Res 104:16709–16717
Held IM (1993) Large-scale dynamics and global warming. Bull Am Meteorol Soc 74:228–241
Hong CC, Hsu HH, Lin NH, Chiu H (2011) Roles of European blocking and tropical-extratropical interaction in the 2010 Pakistan flooding. Geophys Res Lett 38:L13806. doi:10.1029/2011GL047583
Immerzeel WW, van Beek LPH, Bierkens MFP (2010) Climate change will affect the Asian water towers. Science 328:1382–1385
Kalnay et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–470
Kalsi SR (1980) On some aspects of interaction between middle latitude westerlies and monsoon circulation. Mausam 31(2):305–308
Kalsi SR, Halder SR (1992) Satellite observations of interaction between tropics and mid latitudes. Mausam 43:59–64
Kistler RE et al (2001) The NCEP-NCAR 50-year reanalysis: monthly means CD-ROM and documentation. Bull Am Meteorol Soc 82:247–268
Klein Tank AMG, Peterson TC, Quadir DA et al (2006) Changes in daily temperature and precipitation extremes in central and South Asia. J Geophys Res 111:D16105. doi:10.1029/2005JD006316
Kothawale DR, Rupa Kumar K (2005) On the recent changes in surface temperature trends over India. Geophys Res Lett 32:L18714. doi:10.1029/2005GL023528
Krishnan R, Sugi M (2003) Pacific decadal oscillation and variability of the Indian summer monsoon rainfall. Clim Dyn 21:233–242
Liu X, Chen B (2000) Climatic warming in the Tibetan Plateau during recent decades. Int J Climatol 20:1729–1742
Liu X, Cheng Z, Yan L, Yin Z (2009) Elevation dependency of recent and future minimum surface air temperature trends in the Tibetan Plateau and its surroundings. Global Planet Change 68:164–174
Lu J, Chen G, Frierson DMW (2008) Response of the zonal mean atmospheric circulation to El Niño versus global warming. J Clim 21:5942–5959
Maheras P, Flocas HA, Patrikas I, Anagnostopoulou C (2001) A 40 year climatology of surface cyclones in the Mediterranean region. Spatial and temporal distribution. Int J Climatol 21:109–130
Mann ME, Bradley RS, Hughes MK (1999) Northern hemisphere temperatures during the past millennium: inferences, uncertainties, and limitations. Geophys Res Lett 26(6):759–762
Mooley DA (1957) The role of western disturbances in the production of weather over India during different seasons. Indian J Meteorol Geophys 8:253–260
Mujumdar M et al (2012) The Asian summer monsoon response to the La Nina event of 2010. Meteorol Appl 19:216–225
Pai DS, Latha Sridhar, Rajeevan M, Sreejith OP, Satbhai NS, Mukhopadhyay B (2013) Development and analysis of a new high spatial resolution (0.25° × 0.25°) long period (1901–2010) daily gridded rainfall dataset over India. National Climate Centre, Research report No. 1/2013
Phillips NA (1954) Energy transformations and meridional circulations associated with simple baroclinic waves in a two-level quasi-geostrophic model. Tellus 6:273–286
Pisharoty PR, Desai BN (1956) Western disturbances and Indian weather. Indian J Meteorol Geophys 8:333–338
Puranik DM, Karekar RN (2009) Western disturbances seen with AMSU-B and infrared sensors. J Earth Syst Sci 118(1):27–39
Raju PVS, Bhatla R, Mohanty UC (2011) A study on certain aspects of kinetic energy associated with western disturbances over northwest India. Atmósfera 24(4):375–384
Rees HG, Collins DN (2006) Regional differences in response of flow in glacier-fed Himalayan Rivers to climatic warming. Hydrol Process 20(10):2157–2169
Shrestha AB, Wake CP, Mayewski PA, Dibb JE (1999) Maximum temperature trends in the Himalaya and its vicinity: an analysis based on temperature records from Nepal for the period 1971–94. J Clim 12:2775–2787
Syed FS, Giorgi F, Pal JS, King MP (2006) Effect of remote forcings on the winter precipitation of central southwest Asia part 1: observations. Theor Appl Climatol 86(1–4):147–160
Syed FS, Giorgi F, Pal JS, Keay K (2010) Regional climate model simulation of winter climate over Central-Southwest Asia, with emphasis on NAO and ENSO effects. Int J Climatol 30:220–235. doi:10.1002/joc.1887
Thompson LG, Mosley-Thompson E, Davis ME, Lin PN, Henderson K, Mashiotta TA (2003) Tropical glacier and ice core evidence of climate change on annual to millennial time scales. Clim Change 59:137–155
Trigo IF, Davies TD, Bigg GR (2000) Decline in Mediterranean rainfall caused by weakening of Mediterranean cyclones. Geophys Res Lett 27:2913–2916
Uppala SM et al (2005) The ERA-40 re-analysis. Quart J R Meteorol Soc 131:2961–3012. doi:10.1256/qj.04.176
Yadav RK, Yoo JH, Kucharski F, Abid MA (2010) Why is ENSO influencing northwest India winter precipitation in recent decades? J Clim 23:1979–1993
Yasutomi N, Hamada A, Yatagai A (2011) Development of a long-term daily gridded temperature dataset and its application to rain/snow discrimination of daily precipitation. Global Environ Res 15(2011):165–172
Yatagai A, K Kamiguchi, O Arakawa, A Hamada, N Yasutomi and A Kitoh (2012) APHRODITE: constructing a long-term daily gridded precipitation dataset for Asia based on a dense network of rain gauges. Bull Am Meteorol Soc. doi:10.1175/BAMS-D-11-00122.1
Zhang Y, Wang WC (1997) Model-simulated northern winter cyclone and anticyclone activity under a greenhouse warming scenario. J Clim 10:1616–1634
Acknowledgments
The authors acknowledge discussions with Dr. Ashwini Kulkarni and Dr. T. P. Sabin. IITM is fully funded by the Ministry of Earth Sciences (MoES), Govt. of India. The authors are thankful to Dr. D. S. Pai of the National Climate Centre, IMD for providing the (0.25° × 0.25°) high resolution precipitation data. The authors are thankful to the three anonymous reviewers and the Editor, Prof. Jean-Claude Duplessy for providing helpful reviews.
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
382_2014_2166_MOESM1_ESM.pdf
Figure A1: The time-series of standard-deviation of daily precipitation during the DJFMA season for the period (1901-2011) averaged over the WH domain. The precipitation dataset is from IMD. A significant increasing trend (at 5 % level) can be seen (PDF 474 kb)
382_2014_2166_MOESM2_ESM.pdf
Figure A2: Daily time series of the first two principal components (PCs) of the DJFMA 500 hPa geopotential height variability computed using NCEP/NCAR reanalysis for the period (1948 –2011) (a) PC1 and (b) PC2 (PDF 1833 kb)
382_2014_2166_MOESM3_ESM.pdf
Figure A3: Latitude weighted EOF/PC analysis of daily high-frequency geopotential height anomalies at 500 hPa for the DJFMA season based on ERA-40 reanalysis data for the period (1957 – 2001) (a) Spatial pattern of the first mode EOF1 (b) Spatial pattern of the second mode EOF2 (c) Time series of the standard deviation of PC1 computed for each DJFMA season during 1957–2001. Note the increasing trend of the time-series which is significant at 5 % level. (d) Same as ‘c’ except for PC2. The first and second modes explain 27.8 % and 24.3 % of the total variance respectively (PDF 1347 kb)
Rights and permissions
About this article
Cite this article
Madhura, R.K., Krishnan, R., Revadekar, J.V. et al. Changes in western disturbances over the Western Himalayas in a warming environment. Clim Dyn 44, 1157–1168 (2015). https://doi.org/10.1007/s00382-014-2166-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00382-014-2166-9